-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathevaluate.py
156 lines (135 loc) · 5.96 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.model import get_model
from utils.tools import to_device, log, synth_one_sample
from model import E2ETTSLoss
from dataset import Dataset
def evaluate(device, model, mpd, msd, step, configs, logger=None, losses=None, STFT=None):
preprocess_config, model_config, train_config = configs
use_mpd = model_config["discriminator"]["use_mpd"]
# Get dataset
dataset = Dataset(
"val.txt", preprocess_config, model_config, train_config, sort=False, drop_last=False
)
batch_size = train_config["optimizer"]["batch_size"]
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
)
# Get loss function
mel_fmax_loss = preprocess_config["preprocessing"]["mel"]["mel_fmax_loss"]
Loss = E2ETTSLoss(preprocess_config, model_config, train_config, device).to(device)
# Evaluation
loss_sums = [{k:0 for k in loss.keys()} if isinstance(loss, dict) else 0 for loss in losses]
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
##########################
# Evaluate Discriminator #
##########################
# Forward
output = model(*(batch[2:]), step=step)
y, y_g_hat = batch[6].unsqueeze(1), output[0]
# MPD
loss_disc_f = torch.zeros(1).to(device)
if use_mpd:
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = Loss.discriminator_loss(y_df_hat_r, y_df_hat_g)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = Loss.discriminator_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
#######################
# Evaluate Generator #
#######################
# L1 Mel-Spectrogram Loss
# loss_mel = Loss.spec_loss(y.squeeze(1), y_g_hat.squeeze(1)) * 45
loss_mel = nn.functional.l1_loss(
STFT(y.squeeze(1), mel_fmax=mel_fmax_loss), STFT(y_g_hat.squeeze(1), mel_fmax=mel_fmax_loss)
) * 45
# Upsampler
loss_fm_f = torch.zeros(1).to(device)
loss_gen_f = torch.zeros(1).to(device)
if use_mpd:
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
loss_fm_f = Loss.feature_loss(fmap_f_r, fmap_f_g)
loss_gen_f, losses_gen_f = Loss.generator_loss(y_df_hat_g)
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
loss_fm_s = Loss.feature_loss(fmap_s_r, fmap_s_g)
loss_gen_s, losses_gen_s = Loss.generator_loss(y_ds_hat_g)
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
# Variance
(
loss_var_all,
loss_pitch,
loss_energy,
loss_duration,
loss_ctc,
loss_bin,
) = Loss.variance_loss(batch, output, step=step)
losses = (
loss_disc_all + loss_gen_all + loss_var_all, loss_gen_all, loss_var_all, loss_disc_s, loss_disc_f, loss_gen_s, loss_gen_f, loss_fm_s, loss_fm_f, loss_mel, loss_pitch, loss_energy, loss_duration, loss_ctc, loss_bin,
)
for i in range(len(losses)):
if isinstance(losses[i], dict):
for k in loss_sums[i].keys():
loss_sums[i][k] += losses[i][k].item() * len(batch[0])
else:
loss_sums[i] += losses[i].item() * len(batch[0])
loss_means = []
loss_means_ = []
for loss_sum in loss_sums:
if isinstance(loss_sum, dict):
loss_mean = {k:v / len(dataset) for k, v in loss_sum.items()}
loss_means.append(loss_mean)
loss_means_.append(sum(loss_mean.values()))
else:
loss_means.append(loss_sum / len(dataset))
loss_means_.append(loss_sum / len(dataset))
message = "Validation Step {}, Total Loss: {:.4f}, loss_gen_all: {:.4f}, loss_var_all: {:.4f}, loss_disc_s: {:.4f}, loss_disc_f: {:.4f}, loss_gen_s: {:.4f}, loss_gen_f: {:.4f}, loss_fm_s: {:.4f}, loss_fm_f: {:.4f}, loss_mel: {:.4f}, loss_pitch: {:.4f}, loss_energy: {:.4f}, loss_duration: {:.4f}, loss_ctc: {:.4f}, loss_bin: {:.4f}".format(
*([step] + [l for l in loss_means_])
)
if logger is not None:
figs, fig_attn, wav_reconstruction, wav_prediction, tag = synth_one_sample(
batch,
output,
model_config,
preprocess_config,
STFT,
)
log(logger, step, losses=loss_means)
log(
logger,
step,
img=fig_attn,
tag="Validation/attn",
)
log(
logger,
step,
figs=figs,
tag="Validation",
)
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
log(
logger,
step,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Validation/reconstructed",
)
log(
logger,
step,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Validation/synthesized",
)
return message