You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm on the current master (the release pip version failed on import), trying to define a callback.
Trying to imitate the example in readme.md didn't work out:
hera = HeraCallback('bla', 'localhost', '4000')
...
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/model_selection/_validation.pyc in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch)
138 train, test, verbose, None,
139 fit_params)
--> 140 for train, test in cv_iter)
141 return np.array(scores)[:, 0]
142
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
756 # was dispatched. In particular this covers the edge
757 # case of Parallel used with an exhausted iterator.
--> 758 while self.dispatch_one_batch(iterator):
759 self._iterating = True
760 else:
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in dispatch_one_batch(self, iterator)
606 return False
607 else:
--> 608 self._dispatch(tasks)
609 return True
610
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in _dispatch(self, batch)
569 dispatch_timestamp = time.time()
570 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 571 job = self._backend.apply_async(batch, callback=cb)
572 self._jobs.append(job)
573
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in apply_async(self, func, callback)
107 def apply_async(self, func, callback=None):
108 """Schedule a func to be run"""
--> 109 result = ImmediateResult(func)
110 if callback:
111 callback(result)
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in __init__(self, batch)
324 # Don't delay the application, to avoid keeping the input
325 # arguments in memory
--> 326 self.results = batch()
327
328 def get(self):
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Users/olevinkr/anaconda/lib/python2.7/site-packages/sklearn/model_selection/_validation.pyc in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
236 estimator.fit(X_train, **fit_params)
237 else:
--> 238 estimator.fit(X_train, y_train, **fit_params)
239
240 except Exception as e:
/Users/olevinkr/anaconda/lib/python2.7/site-packages/keras/wrappers/scikit_learn.pyc in fit(self, X, y, **kwargs)
146 fit_args.update(kwargs)
147
--> 148 history = self.model.fit(X, y, **fit_args)
149
150 return history
/Users/olevinkr/anaconda/lib/python2.7/site-packages/keras/models.pyc in fit(self, x, y, batch_size, nb_epoch, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, **kwargs)
650 shuffle=shuffle,
651 class_weight=class_weight,
--> 652 sample_weight=sample_weight)
653
654 def evaluate(self, x, y, batch_size=32, verbose=1,
/Users/olevinkr/anaconda/lib/python2.7/site-packages/keras/engine/training.pyc in fit(self, x, y, batch_size, nb_epoch, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch)
1109 val_f=val_f, val_ins=val_ins, shuffle=shuffle,
1110 callback_metrics=callback_metrics,
-> 1111 initial_epoch=initial_epoch)
1112
1113 def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
/Users/olevinkr/anaconda/lib/python2.7/site-packages/keras/engine/training.pyc in _fit_loop(self, f, ins, out_labels, batch_size, nb_epoch, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)
795 'metrics': callback_metrics,
796 })
--> 797 callbacks.on_train_begin()
798 callback_model.stop_training = False
799 self.validation_data = val_ins
/Users/olevinkr/anaconda/lib/python2.7/site-packages/keras/callbacks.pyc in on_train_begin(self, logs)
72 def on_train_begin(self, logs={}):
73 for callback in self.callbacks:
---> 74 callback.on_train_begin(logs)
75
76 def on_train_end(self, logs={}):
/Users/olevinkr/anaconda/lib/python2.7/site-packages/heraspy/callback.pyc in on_train_begin(self, *args)
37 {
38 'params': self.params,
---> 39 'modelJson': json.loads(self.model.to_json()),
40 }
41 )
TypeError: 'str' object is not callable
The text was updated successfully, but these errors were encountered:
I'm on the current master (the release pip version failed on import), trying to define a callback.
Trying to imitate the example in readme.md didn't work out:
...
The text was updated successfully, but these errors were encountered: