diff --git a/prover/drivers/coq-driver.md b/prover/drivers/coq-driver.md
index 13a19fa01..ffba1500f 100644
--- a/prover/drivers/coq-driver.md
+++ b/prover/drivers/coq-driver.md
@@ -43,9 +43,9 @@ module DRIVER-COQ
( .Bag
=> symbol CoqIdentToSymbol(ID)(.Sorts) : StringToSort("Term")
- axiom \equals(CoqIdentToSymbol(ID), CoqTermToPattern(TERM))
+ axiom getFreshGlobalAxiomName() : \equals(CoqIdentToSymbol(ID), CoqTermToPattern(TERM))
) ...
-
+
// Translate inductive cases
rule Inductive ID BINDERs : TERM := .CoqIndCases .
@@ -63,7 +63,7 @@ module DRIVER-COQ
( .Bag
=> symbol CoqIdentToSymbol(IDC)(.Sorts) : StringToSort("Term")
- axiom \type(CoqIdentToSymbol(IDC)(.Patterns), CoqTermToPattern(TERMC))
+ axiom getFreshGlobalAxiomName() : \type(CoqIdentToSymbol(IDC)(.Patterns), CoqTermToPattern(TERMC))
) ...
diff --git a/prover/lang/coq-lang.md b/prover/lang/coq-lang.md
index ba92ca165..f9eeaeb79 100644
--- a/prover/lang/coq-lang.md
+++ b/prover/lang/coq-lang.md
@@ -38,11 +38,6 @@ module COQ
syntax VariableName ::= CoqNameToVariableName(CoqName) [function]
rule CoqNameToVariableName(NAME) => StringToVariableName(CoqNameToString(NAME))
- syntax Sorts ::= CoqBindersToSorts(CoqBinders) [function]
- rule CoqBindersToSorts(.CoqBinders) => .Sorts
- rule CoqBindersToSorts(NAME:CoqName BINDERs) => StringToSort("Term"), CoqBindersToSorts(BINDERs)
- rule CoqBindersToSorts((NAMES : TYPE) BINDERs) => CoqNamesToSorts(NAMES) ++Sorts CoqBindersToSorts(BINDERs)
-
syntax Sorts ::= CoqNamesToSorts(CoqNames) [function]
rule CoqNamesToSorts(.CoqNames) => .Sorts
rule CoqNamesToSorts(NAME:CoqName NAMEs) => StringToSort("Term"), CoqNamesToSorts(NAMEs)
diff --git a/prover/t/coq-tests/Logic.v b/prover/t/coq-tests/Logic.v
index 7f886c87d..8a18dcdbe 100644
--- a/prover/t/coq-tests/Logic.v
+++ b/prover/t/coq-tests/Logic.v
@@ -5,7 +5,7 @@ Inductive False : Prop := .
Inductive nat : Prop :=
Z : nat
- | S : nat -> nat .
+ | S : (forall (x : nat), nat) .
Definition not := fun (A: Prop) => (forall (x : A), False) .
diff --git a/prover/t/coq-tests/nat_ind.v b/prover/t/coq-tests/nat_ind.v
index b127282e6..03111631f 100644
--- a/prover/t/coq-tests/nat_ind.v
+++ b/prover/t/coq-tests/nat_ind.v
@@ -7,7 +7,7 @@ Inductive nat : Type := Z : nat | S : forall (x : nat), nat .
// axiom \type(Z(), nat())
Definition nat_ind :=
-fun (P : nat -> Prop) (f : P 0) (f0 : forall (n : nat), P n -> P (S n)) =>
+fun (P : (forall (n : nat), Prop)) (f : P 0) (f0 : forall (n : nat), (forall (x : P n), P (S n))) =>
fix F (n : nat) := match n with
Z => f
| S n0 => f0 n0 (F n0)