-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiment.py
102 lines (78 loc) · 3.34 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""A simple training loop."""
import csv
from absl import logging
from tensorflow.compat.v1.io import gfile
def _ema(base, val, decay=0.995):
return base * decay + (1 - decay) * val
def run(env, agent, num_episodes, report_every=200, num_eval_reps=1):
"""Runs an agent on an environment.
Args:
env: The environment.
agent: The agent.
num_episodes: Number of episodes to train for.
report_every: Frequency at which training progress are reported (episodes).
num_eval_reps: Number of eval episodes to run per training episode.
Returns:
A list of dicts containing training and evaluation returns, and a list of
reported returns smoothed by EMA.
"""
returns = []
logged_returns = []
train_return_ema = 0.
eval_return_ema = 0.
for episode in range(num_episodes):
returns.append(dict(episode=episode))
# Run a training episode.
train_episode_return = run_episode(env, agent, is_training=True)
train_return_ema = _ema(train_return_ema, train_episode_return)
returns[-1]["train"] = train_episode_return
# Run an evaluation episode.
returns[-1]["eval"] = []
for _ in range(num_eval_reps):
eval_episode_return = run_episode(env, agent, is_training=False)
eval_return_ema = _ema(eval_return_ema, eval_episode_return)
returns[-1]["eval"].append(eval_episode_return)
if ((episode + 1) % report_every) == 0 or episode == 0:
logged_returns.append(
dict(episode=episode, train=train_return_ema, eval=[eval_return_ema]))
logging.info("Episode %s, avg train return %.3f, avg eval return %.3f",
episode + 1, train_return_ema, eval_return_ema)
if hasattr(agent, "get_logs"):
logging.info("Episode %s, agent logs: %s", episode + 1,
agent.get_logs())
return returns, logged_returns
def run_episode(environment, agent, is_training=False):
"""Run a single episode."""
timestep = environment.reset()
while not timestep.last():
action = agent.step(timestep, is_training)
new_timestep = environment.step(action)
if is_training:
agent.update(timestep, action, new_timestep)
timestep = new_timestep
episode_return = environment.episode_return
return episode_return
def write_returns_to_file(path, returns):
"""Write returns to file."""
with gfile.GFile(path, "w") as file:
writer = csv.writer(file, delimiter=" ", quoting=csv.QUOTE_MINIMAL)
writer.writerow(["episode", "train"] +
[f"eval_{idx}" for idx in range(len(returns[0]["eval"]))])
for row in returns:
writer.writerow([row["episode"], row["train"]] + row["eval"])