-
Notifications
You must be signed in to change notification settings - Fork 0
/
batch_env.py
110 lines (87 loc) · 3.51 KB
/
batch_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Lint as: python2, python3
# pylint: disable=g-bad-file-header
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Threaded batch environment wrapper."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from concurrent import futures
from six.moves import range
from six.moves import zip
from tvt import nest_utils
class BatchEnv(object):
"""Wrapper that steps multiple environments in separate threads.
The threads are stepped in lock step, so all threads progress by one step
before any move to the next step.
"""
def __init__(self, batch_size, env_builder, **env_kwargs):
self.batch_size = batch_size
self._envs = [env_builder(**env_kwargs) for _ in range(batch_size)]
self._num_actions = self._envs[0].num_actions
self._observation_shape = self._envs[0].observation_shape
self._episode_length = self._envs[0].episode_length
self._executor = futures.ThreadPoolExecutor(max_workers=self.batch_size)
def reset(self):
"""Reset the entire batch of environments."""
def reset_environment(env):
return env.reset()
try:
output_list = []
for env in self._envs:
output_list.append(self._executor.submit(reset_environment, env))
output_list = [env_output.result() for env_output in output_list]
except KeyboardInterrupt:
self._executor.shutdown(wait=True)
raise
observations, rewards = nest_utils.nest_stack(output_list)
return observations, rewards
def step(self, action_list):
"""Step batch of envs.
Args:
action_list: A list of actions, one per environment in the batch. Each one
should be a scalar int or a numpy scaler int.
Returns:
A tuple (observations, rewards):
observations: A nest of observations, each one a numpy array where the
first dimension has size equal to the number of environments in the
batch.
rewards: An array of rewards with size equal to the number of
environments in the batch.
"""
def step_environment(env, action):
return env.step(action)
try:
output_list = []
for env, action in zip(self._envs, action_list):
output_list.append(self._executor.submit(step_environment, env, action))
output_list = [env_output.result() for env_output in output_list]
except KeyboardInterrupt:
self._executor.shutdown(wait=True)
raise
observations, rewards = nest_utils.nest_stack(output_list)
return observations, rewards
@property
def observation_shape(self):
"""Observation shape per environment, i.e. with no batch dimension."""
return self._observation_shape
@property
def num_actions(self):
return self._num_actions
@property
def episode_length(self):
return self._episode_length
def last_phase_rewards(self):
return [env.last_phase_reward() for env in self._envs]