-
Notifications
You must be signed in to change notification settings - Fork 0
/
2-40.scm
63 lines (47 loc) · 1.4 KB
/
2-40.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#lang scheme
(define nil '())
(define (square x) (* x x))
(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))
(define (prime? n)
(= n (smallest-divisor n)))
(define (fold-right op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(fold-right op initial (cdr sequence)))))
(define accumulate fold-right)
(define (enumerate-interval start end)
(if (> start end)
nil
(cons start (enumerate-interval (+ start 1) end))))
(define (flatmap proc seq)
(accumulate append nil (map proc seq)))
(define (prime-sum? pair)
(prime? (+ (car pair) (cadr pair))))
(define (make-pair-sum pair)
(list (car pair) (cadr pair) (+ (car pair) (cadr pair))))
(define (unique-pairs n)
(flatmap
(lambda (i)
(map (lambda (j) (list i j))
(enumerate-interval 1 (- i 1))))
(enumerate-interval 1 n)))
(define (prime-sum-pairs n)
(map make-pair-sum
(filter prime-sum?
(unique-pairs n))))
(prime-sum-pairs 6)
(define (permutations s)
(if (null? s)
(list nil)
(flatmap (lambda (x)
(map (lambda (p) (cons x p))
(permutations (remove x s))))
s)))