-
Notifications
You must be signed in to change notification settings - Fork 0
/
2-57.scm
108 lines (82 loc) · 2.6 KB
/
2-57.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#lang scheme
(require "modules/sicp/sicp.rkt")
(provide make-sum
addend
augend
make-product
multiplier
multiplicand
exponent
make-exponentiation
base)
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s)
(let ((rest (cddr s)))
(fold-right make-sum 0 rest)))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (multiplier p) (cadr p))
(define (multiplicand p)
(let ((rest (cddr p)))
(fold-right make-product 1 rest)))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (exponentiation? x)
(and (pair? x) (eq? (car x) '**)))
(define (fold-right op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(fold-right op initial (cdr sequence)))))
(define (repeated x n)
(if (= n 0)
nil
(cons x (repeated x (- n 1)))))
(define (** base exponent)
(fold-right * 1 (repeated base exponent)))
(define (base s) (cadr s))
(define (exponent s) (caddr s))
(define (make-exponentiation base exponent)
(cond ((=number? exponent 1) base)
((=number? exponent 0) 1)
((=number? base 1) 1)
((and (number? base) (number? exponent)) (** base exponent))
(else (list '** base exponent))))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(exponent exp)
(make-exponentiation (base exp)
(make-sum (exponent exp) -1))))
(error "unknown expression type - DERIV" exp)))
(assert (deriv '(* x y (+ x 3)) 'x)
'(+ (* x y) (* y (+ x 3))))
(assert (deriv '(+ y x) 'x) 1)