-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
141 lines (128 loc) · 4.38 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
import os
from setuptools import setup
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
version_fname = os.path.join(THIS_DIR, 'flowws_keras_experimental', 'version.py')
with open(version_fname) as version_file:
exec(version_file.read())
readme_fname = os.path.join(THIS_DIR, 'README.md')
with open(readme_fname) as readme_file:
long_description = readme_file.read()
entry_points = set()
flowws_modules = []
module_names = [
'Classifier',
'InitializeTF',
'MLP',
'PermanentDropout',
'Save',
'Tensorboard',
'Train',
]
for name in module_names:
if name not in entry_points:
flowws_modules.append('{0} = flowws_keras_experimental.{0}:{0}'.format(name))
entry_points.add(name)
flowws_modules.append(
'flowws_keras_experimental.{0} = flowws_keras_experimental.{0}:{0}'.format(name))
subpkg = 'images'
module_names = [
'CIFAR10',
'CIFAR100',
'Encoder',
'ImagenetDirectory',
'MNIST',
'MobileNetV2',
'ResNet',
]
for name in module_names:
if name not in entry_points:
flowws_modules.append('{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
entry_points.add(name)
flowws_modules.append(
'flowws_keras_experimental.{1}.{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
subpkg = 'branch_replicas'
module_names = [
'Train',
]
for name in module_names:
if name not in entry_points:
flowws_modules.append('{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
entry_points.add(name)
flowws_modules.append(
'flowws_keras_experimental.{1}.{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
subpkg = 'galilean_mc'
module_names = [
'GalileanModel',
]
for name in module_names:
if name not in entry_points:
flowws_modules.append('{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
entry_points.add(name)
flowws_modules.append(
'flowws_keras_experimental.{1}.{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
subpkg = 'neural_potential'
module_names = [
'NeuralPotentialController',
'NeuralPotentialDropout',
'PruneNeuralPotentialLayers',
]
for name in module_names:
if name not in entry_points:
flowws_modules.append('{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
entry_points.add(name)
flowws_modules.append(
'flowws_keras_experimental.{1}.{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
subpkg = 'ring_replicas'
module_names = [
'Train',
]
for name in module_names:
if name not in entry_points:
flowws_modules.append('{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
entry_points.add(name)
flowws_modules.append(
'flowws_keras_experimental.{1}.{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
subpkg = 'text'
module_names = [
'LSTMLM',
'TransformerLM',
]
for name in module_names:
if name not in entry_points:
flowws_modules.append('{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
entry_points.add(name)
flowws_modules.append(
'flowws_keras_experimental.{1}.{0} = flowws_keras_experimental.{1}.{0}:{0}'.format(name, subpkg))
setup(name='flowws-keras-experimental',
author='Matthew Spellings',
author_email='[email protected]',
classifiers=[
'Development Status :: 3 - Alpha',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3',
],
description='Stage-based scientific workflows for miscellaneous deep learning experiments',
entry_points={
'flowws_modules': flowws_modules,
},
extras_require={},
install_requires=[
'flowws',
'gradient-accumulator',
],
license='MIT',
long_description=long_description,
long_description_content_type='text/markdown',
packages=[
'flowws_keras_experimental',
'flowws_keras_experimental.images',
'flowws_keras_experimental.branch_replicas',
'flowws_keras_experimental.galilean_mc',
'flowws_keras_experimental.neural_potential',
'flowws_keras_experimental.ring_replicas',
'flowws_keras_experimental.text',
],
python_requires='>=3',
version=__version__
)