-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
168 lines (133 loc) · 5.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluate embeddings on downstream tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
import tensorflow.compat.v2 as tf
from tcc.algorithms import get_algo
from tcc.config import CONFIG
from tcc.datasets import create_dataset
from tcc.datasets import create_one_epoch_dataset
from tcc.tasks import get_tasks
from tcc.utils import get_embeddings_dataset
from tcc.utils import get_lr_opt_global_step
from tcc.utils import restore_ckpt
from tcc.utils import setup_eval_dir
layers = tf.keras.layers
flags.DEFINE_boolean('continuous_eval', True, 'Evaluate continously.')
flags.DEFINE_string('logdir', '/tmp/alignment_logs', 'Path to logs.')
flags.DEFINE_boolean('defun', True, 'Defun everything!')
flags.DEFINE_boolean('visualize', False, 'Visualize images. Switched off by '
'for default to speed traininig up and take less memory.')
flags.DEFINE_integer(
'max_embs', 0, 'Max number of videos to embed. 0 or less '
'means embed all videos in dataset.')
FLAGS = flags.FLAGS
evaluated_last_ckpt = False
def evaluate_once(algo, iterator_tasks, embedding_tasks, iterators,
summary_writer):
"""Evaluate learnt embeddings on downstream tasks."""
# Sets up model for training.
_, optimizer, global_step = get_lr_opt_global_step()
restore_ckpt(logdir=CONFIG.LOGDIR, optimizer=optimizer, **algo.model)
if global_step.numpy() == CONFIG.TRAIN.MAX_ITERS:
global evaluated_last_ckpt
evaluated_last_ckpt = True
metrics = {}
if iterator_tasks:
with summary_writer.as_default():
with tf.summary.record_if(True):
for task_name, task in iterator_tasks.items():
metrics[task_name] = task.evaluate(algo, global_step,
iterators=iterators)
max_embs = None if FLAGS.max_embs <= 0 else FLAGS.max_embs
if embedding_tasks:
frames_per_batch = CONFIG.EVAL.FRAMES_PER_BATCH
for dataset_name in CONFIG.DATASETS:
dataset = {'name': dataset_name}
train_iterator = create_one_epoch_dataset(
dataset_name,
'train',
mode='eval',
path_to_tfrecords=CONFIG.PATH_TO_TFRECORDS)
dataset['train_dataset'] = get_embeddings_dataset(
algo.model, train_iterator, frames_per_batch=frames_per_batch,
max_embs=max_embs)
val_iterator = create_one_epoch_dataset(
dataset_name,
'val',
mode='eval',
path_to_tfrecords=CONFIG.PATH_TO_TFRECORDS)
dataset['val_dataset'] = get_embeddings_dataset(
algo.model, val_iterator, frames_per_batch=frames_per_batch,
max_embs=max_embs)
with summary_writer.as_default():
with tf.summary.record_if(True):
for task_name, task in embedding_tasks.items():
if task_name not in metrics:
metrics[task_name] = {}
metrics[task_name][dataset_name] = task.evaluate(
algo, global_step, embeddings_dataset=dataset)
# Add all metrics in a separate tag so that analysis is easier.
with summary_writer.as_default():
with tf.summary.record_if(True):
for task_name in embedding_tasks.keys():
for dataset in CONFIG.DATASETS:
tf.summary.scalar('metrics/%s_%s' % (dataset, task_name),
metrics[task_name][dataset],
step=global_step)
avg_metric = sum(metrics[task_name].values())
avg_metric /= len(CONFIG.DATASETS)
tf.summary.scalar('metrics/all_%s' % task_name,
avg_metric, step=global_step)
def timeout_fn():
global evaluated_last_ckpt
return evaluated_last_ckpt
def evaluate():
"""Evaluate embeddings."""
CONFIG.LOGDIR = FLAGS.logdir
logdir = CONFIG.LOGDIR
setup_eval_dir(logdir)
algo = get_algo(CONFIG.TRAINING_ALGO)
if FLAGS.defun:
algo.call = tf.function(algo.call)
algo.compute_loss = tf.function(algo.compute_loss)
iterator_tasks, embedding_tasks = get_tasks(CONFIG.EVAL.TASKS)
# Setup summary writer.
summary_writer = tf.summary.create_file_writer(
os.path.join(logdir, 'eval_logs'), flush_millis=10000)
iterators = {}
if iterator_tasks:
# Setup Dataset Iterators from train and val datasets.
iterators['train_iterator'] = create_dataset('train', mode='eval')
iterators['val_iterator'] = create_dataset('val', mode='eval')
if FLAGS.continuous_eval:
for _ in tf.train.checkpoints_iterator(logdir, timeout=1,
timeout_fn=timeout_fn):
evaluate_once(algo, iterator_tasks, embedding_tasks, iterators,
summary_writer)
else:
evaluate_once(algo, iterator_tasks, embedding_tasks, iterators,
summary_writer)
def main(_):
tf.enable_v2_behavior()
tf.keras.backend.set_learning_phase(0)
evaluate()
if __name__ == '__main__':
app.run(main)