-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_flan_t5.py
217 lines (175 loc) · 8.63 KB
/
finetune_flan_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from __future__ import print_function
from typing import List, Tuple
from tqdm import tqdm
import torch
from datasets import load_dataset
from transformers import PreTrainedTokenizer, T5ForConditionalGeneration, T5Tokenizer, AdamW, set_seed
from torch.utils.data import DataLoader
import argparse
from MyDataset import Dataset
import MyDataset
import wandb
def parse_command_line_arguments():
parser = argparse.ArgumentParser(
description='CLI for training MT5 T2T model')
parser.add_argument('--t5_model', type=str, default="google/flan-t5-small",
help="What type of T5 model do you want use?")
parser.add_argument('--batch_size', type=int, default=6,
help='mini-batch size (default: 16)')
parser.add_argument('--epochs', type=int, default=30,
help='number of training epochs (default: 40)')
parser.add_argument('--lr', type=float, default=1e-5,
help='learning rate (Adam) (default: 1e-4)')
parser.add_argument('--workers', type=int, default=10,
help='number of working units used to load the data (default: 10)')
parser.add_argument('--device', default='cuda', type=str,
help='device to be used for computations (in {cpu, cuda:0, cuda:1, ...}, default: cpu)')
parser.add_argument('--max_input_length', type=int, default=512,
help='Maximum lenght of input text, (default: 512, maximum admitted: 512)')
parser.add_argument('--seed', type=int, default=7,
help='Seed for random initialization (default: 7)')
parsed_arguments = parser.parse_args()
return parsed_arguments
def train(model: T5ForConditionalGeneration, tokenizer: PreTrainedTokenizer, optimizer: AdamW, train_set: Dataset, validation_set: Dataset, num_train_epochs: int, device: str, batch_size: int, max_input_length: int = 512):
"""_summary_
Args:
model (MT5ForConditionalGeneration): _description_
tokenizer (PreTrainedTokenizer): _description_
optimizer (AdamW): _description_
train_set (Dataset): _description_
validation_set (Dataset): _description_
num_train_epochs (int): _description_
device (str): _description_
batch_size (int): _description_
"""
my_trainset_dataloader = DataLoader(train_set, batch_size=args.batch_size,
num_workers=args.workers, collate_fn=lambda data: train_set.pack_minibatch(data))
my_validation_dataloader = DataLoader(validation_set, batch_size=args.batch_size,
num_workers=args.workers, collate_fn=lambda data: validation_set.pack_minibatch(data))
# set training mode on the model
model.train()
# model to device
model.to(device)
f1_old: int = 0
best_bleu: int = 0
for epoch in range(num_train_epochs):
epoch_train_loss = 0.
for contexts,questions,answers in tqdm(my_trainset_dataloader):
optimizer.zero_grad()
inputs = list(map(lambda tuple: f"question:{tuple[0]} context:{tuple[1]}", zip(questions,contexts)))
encoded_inputs = tokenizer(
inputs,
padding="longest",
max_length=max_input_length,
truncation=True,
return_tensors="pt",
)
encoded_targets = tokenizer(
answers,
padding="longest",
max_length=max_input_length,
truncation=True,
return_tensors="pt",
)
input_ids, attention_mask = encoded_inputs.input_ids, encoded_inputs.attention_mask
encoded_targets = encoded_targets.input_ids
# replace padding target token id's of the labels by -100, crossEntropy skip target label == -100
encoded_targets[encoded_targets == tokenizer.pad_token_id] = -100
input_ids = input_ids.to(device)
encoded_targets = encoded_targets.to(device)
attention_mask = attention_mask.to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=encoded_targets)
loss = outputs.loss
loss.backward()
optimizer.step()
# print(f"loss={loss.item()}")
epoch_train_loss += loss.item() * batch_size
print(f"epoch={epoch + 1}/{num_train_epochs}")
print(f"\t Train loss = {epoch_train_loss/len(train_set):.4f}")
model.eval()
epoch_val_loss = 0
with torch.no_grad():
model_predictions_encoded = []
target_encoded = []
for contexts, questions, answers in tqdm(my_validation_dataloader):
inputs = list(map(lambda tuple: f"question: {tuple[0]} context:{tuple[1]}", zip(
questions, contexts)))
encoded_inputs = tokenizer(
inputs,
padding="longest",
max_length=max_input_length,
truncation=True,
return_tensors="pt",
)
encoded_targets = tokenizer(
answers,
padding="longest",
max_length=max_input_length,
truncation=True,
return_tensors="pt",
)
encoded_inputs, attention_mask = encoded_inputs.input_ids, encoded_inputs.attention_mask
encoded_targets = encoded_targets.input_ids
encoded_inputs = encoded_inputs.to(device)
encoded_targets = encoded_targets.to(device)
attention_mask = attention_mask.to(device)
outputs = model(input_ids=encoded_inputs,
attention_mask=attention_mask, labels=encoded_targets)
loss = outputs.loss
epoch_val_loss += loss.item() * batch_size
model_predictions = model.generate(
input_ids=encoded_inputs, attention_mask=attention_mask)
model_predictions_encoded += model_predictions.tolist()
target_encoded += encoded_targets.tolist()
f1, exact_match,bleu_score = validation_set.evaluate(
model_predictions_encoded, target_encoded)
wandb.log(
{
"epoch": epoch,
"train_loss": epoch_train_loss/len(train_set),
"val_loss": epoch_val_loss/len(validation_set),
"f1": f1,
"exact_match": exact_match,
"bleu_score": bleu_score
}
)
print(f"\t Validation F1 = {f1:.2f}, EM = {exact_match:.2f}")
if f1 > f1_old :
model.save_pretrained(f'results/{model.name_or_path}/best-f1')
tokenizer.save_pretrained(f'results/{model.name_or_path}/best-f1')
f1_old = f1
if epoch+1 % 10 == 0:
model.save_pretrained(f'results/{model.name_or_path}/checkpoint-{epoch+1}')
tokenizer.save_pretrained(f'results/{model.name_or_path}/tcheckpoint-{epoch+1}')
model.train()
model.save_pretrained(
f'results/{model.name_or_path}/checkpoint-{epoch+1}')
tokenizer.save_pretrained(
f'results/{model.name_or_path}/checkpoint-{epoch+1}')
if __name__ == '__main__':
args = parse_command_line_arguments()
for k, v in args.__dict__.items():
print(k + '=' + str(v))
# Set seed
set_seed(args.seed)
# _data = load_dataset("duorc", "ParaphraseRC")
model = T5ForConditionalGeneration.from_pretrained(args.t5_model)
for layer in model.decoder.block:
for block in layer.layer:
block.dropout.p = 0.4
for layer in model.encoder.block:
for block in layer.layer:
block.dropout.p = 0.4
tokenizer = T5Tokenizer.from_pretrained(args.t5_model)
# creating the optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
train_set = Dataset("data/train.csv", tokenizer)
validation_set = Dataset("data/val.csv", tokenizer)
wandb.init(project="megathon")
wandb.run.name = "finetuning_small_flan_t5_dropout_0.4"
train(model=model,
tokenizer=tokenizer,
optimizer=optimizer,
train_set=train_set,
validation_set=validation_set,
num_train_epochs=args.epochs, device=args.device, batch_size=args.batch_size)