-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw4.rkt
84 lines (72 loc) · 2.65 KB
/
hw4.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#lang racket
(provide (all-defined-out)) ;; so we can put tests in a second file
;; put your code below
;; Problem 1
(define (sequence low high stride)
( if (<= low high)
(cons low (sequence (+ low stride) high stride))
null))
;; Problem 2
(define (string-append-map xs suffix )
(map (lambda(x) (string-append x suffix)) xs))
;; Problem 3
(define (list-nth-mod xs n)
(let ([len (length xs)])
(cond [(< n 0) (error "list-nth-mod: negative number")]
[(null? xs) (error "list-nth-mod: empty list")]
[(= n 0) (car xs)]
[(>= n len) (list-nth-mod xs (remainder n len))]
[#t (list-nth-mod (cdr xs) (- n 1))])))
;; Problem 4
(define (stream-for-n-steps s n)
(cond
[(< 0 n) (cons (car (s)) (stream-for-n-steps (cdr (s)) (- n 1))) ]
[#t null]))
;; Problem 5
(define funny-number-stream
(letrec ([g (lambda (x) (if(zero? (remainder x 5)) (- 0 x) x))]
[f (lambda (x) (cons (g x) (lambda () (f (+ x 1)))))])
(lambda () (f 1))))
;; Problem 6
(define dan-then-dog
(letrec ([g (lambda (x) (if(odd? x) "dan.jpg" "dog.jpg"))]
[f (lambda (x) (cons (g x) (lambda () (f (+ x 1)))))])
(lambda () (f 1))))
;; Problem 7
(define (stream-add-zero s)
(letrec ([f (lambda (s) (cons (cons 0 (car(s))) (lambda () (f (cdr(s))))))])
(lambda () (f s))))
;; Problem 8
(define (cycle-lists xs ys)
(letrec ([inc (lambda (x) (+ x 1))]
[f (lambda (i j) (cons (cons (list-nth-mod xs i) (list-nth-mod ys j)) (lambda () (f (inc i) (inc j)))))])
(lambda () (f 0 0))))
;; Problem 9
(define (vector-assoc v vec)
(letrec ([f (lambda(len pos)
(if (= len pos)
#f
(letrec ([cur (vector-ref vec pos)])
(if (pair? cur)
(cond [(equal? (car cur) v) cur]
[#t (f len (+ pos 1))])
(f len (+ pos 1))))))])
(f (vector-length vec) 0)))
;; Problem 10
(define (cached-assoc xs n)
(letrec ([pos 0]
[cache (make-vector n #f)])
(lambda(v) (letrec ([cache-result (vector-assoc v cache)])
(cond [cache-result cache-result]
[#t (let ([result (assoc v xs)])
(begin
(vector-set! cache pos result)
(set! pos (remainder (+ pos 1) n))
result))])))))
;; Problem 11
(define-syntax while-less
(syntax-rules (do)
[(while-less e1 do e2)
(letrec ([f (lambda(x) ( if (< e2 x) (f x) #t))]
[v e1])
(f v))]))