-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathexport.py
67 lines (49 loc) · 2.24 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from __future__ import print_function
from keras import backend as K
from keras.models import load_model
from keras.models import Sequential
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import tag_constants, signature_constants
from tensorflow.python.saved_model.signature_def_utils_impl import build_signature_def, predict_signature_def
import tensorflow as tf
import shutil
import os
# loading models
emotion_model_path = './face-recog/trained_models/simple_CNN.530-0.65.hdf5'
gender_model_path = './face-recog/trained_models/simple_CNN.81-0.96.hdf5'
emotion_model = load_model(emotion_model_path)
gender_model = load_model(gender_model_path)
# reset learning phase
print(K.learning_phase())
K.set_learning_phase(0)
print(K.learning_phase())
emotion_config = emotion_model.get_config()
emotion_weights = emotion_model.get_weights()
emotion_model = Sequential.from_config(emotion_config)
emotion_model.set_weights(emotion_weights)
gender_config = gender_model.get_config()
gender_weights = gender_model.get_weights()
gender_model = Sequential.from_config(gender_config)
gender_model.set_weights(gender_weights)
# prepare export dir
if os.path.isdir("./export"):
shutil.rmtree("./export")
export_path_emotion = "export/emotion_model/1"
export_path_gender = "export/gender_model/1"
# export models
builder_emotion = saved_model_builder.SavedModelBuilder(export_path_emotion)
builder_gender = saved_model_builder.SavedModelBuilder(export_path_gender)
print("- - -")
print(emotion_model.input)
print(emotion_model.output)
print("- - -")
print(gender_model.input)
print(gender_model.output)
print("- - -")
signature_emotion = predict_signature_def(inputs={"inputs": emotion_model.input}, outputs={"outputs": emotion_model.output})
signature_gender = predict_signature_def(inputs={"inputs": gender_model.input}, outputs={"outputs": gender_model.output})
with K.get_session() as sess:
builder_emotion.add_meta_graph_and_variables(sess=sess, tags=[tag_constants.SERVING], signature_def_map={"predict": signature_emotion})
builder_emotion.save()
builder_gender.add_meta_graph_and_variables(sess=sess, tags=[tag_constants.SERVING], signature_def_map={"predict": signature_gender})
builder_gender.save()