diff --git a/core/testcasecontroller/algorithm/paradigm/incremental_learning/incremental_learning.py b/core/testcasecontroller/algorithm/paradigm/incremental_learning/incremental_learning.py index a50f1998..c3909152 100644 --- a/core/testcasecontroller/algorithm/paradigm/incremental_learning/incremental_learning.py +++ b/core/testcasecontroller/algorithm/paradigm/incremental_learning/incremental_learning.py @@ -167,7 +167,7 @@ def _train(self, model, data_index_file, rounds): os.makedirs(train_output_dir) os.environ["MODEL_URL"] = train_output_dir - os.environ["BASE_MODEL_URL"] = model + os.environ["INITIAL_MODEL_URL"] = model job = self.build_paradigm_job(ParadigmType.INCREMENTAL_LEARNING.value) train_dataset = self.dataset.load_data(data_index_file, "train") diff --git a/core/testcasecontroller/algorithm/paradigm/multiedge_inference/multiedge_inference.py b/core/testcasecontroller/algorithm/paradigm/multiedge_inference/multiedge_inference.py index 4085eafd..a4b1d847 100644 --- a/core/testcasecontroller/algorithm/paradigm/multiedge_inference/multiedge_inference.py +++ b/core/testcasecontroller/algorithm/paradigm/multiedge_inference/multiedge_inference.py @@ -81,7 +81,7 @@ def run(self): def _inference(self, job, trained_model): train_dataset = self.dataset.load_data(self.dataset.train_url, "train") - os.environ["BASE_MODEL_URL"] = trained_model + os.environ["INITIAL_MODEL_URL"] = trained_model inference_dataset = self.dataset.load_data(self.dataset.test_url, "inference") inference_output_dir = os.path.join(self.workspace, "output/inference/") os.environ["RESULT_SAVED_URL"] = inference_output_dir diff --git a/core/testcasecontroller/algorithm/paradigm/singletask_learning/singletask_learning.py b/core/testcasecontroller/algorithm/paradigm/singletask_learning/singletask_learning.py index 90a22129..33775888 100644 --- a/core/testcasecontroller/algorithm/paradigm/singletask_learning/singletask_learning.py +++ b/core/testcasecontroller/algorithm/paradigm/singletask_learning/singletask_learning.py @@ -110,7 +110,7 @@ def _compress(self, trained_model): def _train(self, job, initial_model): train_output_dir = os.path.join(self.workspace, "output/train/") - os.environ["BASE_MODEL_URL"] = initial_model + os.environ["INITIAL_MODEL_URL"] = initial_model train_dataset = self.dataset.load_data(self.dataset.train_url, "train") job.train(train_dataset)