generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 157
/
train.py
108 lines (82 loc) · 2.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gzip
import random
import numpy as np
import torch
import tqdm
from torch.utils.data import DataLoader, Dataset
from zeta.optim import StableAdamWUnfused
from bitnet.at import AutoregressiveWrapper
from bitnet import BitNetTransformer
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024
# helpers
def cycle(loader):
while True:
yield from loader
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
# instantiate GPT-like decoder model
model = BitNetTransformer(num_tokens=256, dim=512, depth=8)
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
# Use CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# prepare enwik8 data
with gzip.open("./data/enwik8.gz") as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
data_train = data_train.to(device)
data_val = data_val.to(device)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long()
return full_seq
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
# optimizer
optim = StableAdamWUnfused(
model.parameters(),
lr=LEARNING_RATE,
)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
model.train()
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.mean().backward()
print(f"training loss: {loss.mean().item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f"validation loss: {loss.mean().item()}")
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print("%s \n\n %s", (prime, "*" * 100))
sample = model.generate(inp[None, ...], GENERATE_LENGTH)
output_str = decode_tokens(sample[0])
print(output_str)