Skip to content

Latest commit

 

History

History
97 lines (60 loc) · 5.87 KB

README.md

File metadata and controls

97 lines (60 loc) · 5.87 KB

Project 2: Continuous Control

Introduction

For this project, you will work with the Reacher environment.

Trained Agent

In this environment, a double-jointed arm can move to target locations. A reward of +0.1 is provided for each step that the agent's hand is in the goal location. Thus, the goal of your agent is to maintain its position at the target location for as many time steps as possible.

The observation space consists of 33 variables corresponding to position, rotation, velocity, and angular velocities of the arm. Each action is a vector with four numbers, corresponding to torque applicable to two joints. Every entry in the action vector should be a number between -1 and 1.

Distributed Training

For this project, we will provide you with two separate versions of the Unity environment:

  • The first version contains a single agent.
  • The second version contains 20 identical agents, each with its own copy of the environment.

The second version is useful for algorithms like PPO, A3C, and D4PG that use multiple (non-interacting, parallel) copies of the same agent to distribute the task of gathering experience.

Solving the Environment

You should take into account the presence of many agents for this environment. In particular, your agents must get an average score of +30 (over 100 consecutive episodes, and over all agents). Specifically,

  • After each episode, we add up the rewards that each agent received (without discounting), to get a score for each agent. This yields 20 (potentially different) scores. We then take the average of these 20 scores.
  • This yields an average score for each episode (where the average is over all 20 agents).

The environment is considered solved, when the average (over 100 episodes) of those average scores is at least +30.

Getting Started

  1. Download the environment from the link below. You need only select the environment that matches your operating system:

    (For Windows users) Check out this link if you need help with determining if your computer is running a 32-bit version or 64-bit version of the Windows operating system.

    (For AWS) If you'd like to train the agent on AWS (and have not enabled a virtual screen), then please use this link (version 1) or this link (version 2) to obtain the "headless" version of the environment. You will not be able to watch the agent without enabling a virtual screen, but you will be able to train the agent. (To watch the agent, you should follow the instructions to enable a virtual screen, and then download the environment for the Linux operating system above.)

  2. Place the file in the DRLND GitHub repository, in the p2_continuous-control/ folder, and unzip (or decompress) the file.

Dependencies

To set up your python environment to run the code in this repository, follow the instructions below.

  1. Create (and activate) a new environment with Python 3.6.

    • Linux or Mac:
    conda create --name drlnd python=3.6
    source activate drlnd
    • Windows:
    conda create --name drlnd python=3.6 
    activate drlnd
  2. Follow the instructions in this repository to perform a minimal install of OpenAI gym.

  3. Clone the Deep Reinforcement Learning Nanodegree repository, and navigate to the python/ folder. Then, install several dependencies.

git clone https://github.com/udacity/deep-reinforcement-learning.git
cd deep-reinforcement-learning/python
pip install .
  1. Create an IPython kernel for the drlnd environment.
python -m ipykernel install --user --name drlnd --display-name "drlnd"
  1. Before running code in a notebook, change the kernel to match the drlnd environment by using the drop-down Kernel menu.

Kernel

Instructions

Follow the instructions in Continuous_Control.ipynb to get started with training your own agent!

Follow the instructions in Continuous_Control.ipynb to train the agents using DDPG algorithm.

The trained model weights will be saved in the file checkpoint_actor.pth and checkpoint_critic.pth.

The model weights are used by the View_trained agents.ipynb notebook to see how a trained agent collects bananas .