diff --git a/timing/timing.Rmd b/timing/timing.Rmd
index d051f8c..48567b7 100644
--- a/timing/timing.Rmd
+++ b/timing/timing.Rmd
@@ -1,14 +1,13 @@
---
+title: "Timing information"
output:
- knitrBootstrap::bootstrap_document:
- theme.chooser: TRUE
- highlight.chooser: TRUE
+ html_document:
+ toc: true
+ toc_float: true
+ code_folding: hide
---
-Timing information
-==================
-
-```{r citationsSetup, echo=FALSE, message=FALSE, warning=FALSE, bootstrap.show.code=FALSE}
+```{r citationsSetup, echo=FALSE, message=FALSE, warning=FALSE}
## Track time spent on making the report
startTime <- Sys.time()
@@ -25,9 +24,8 @@ bibs <- c("knitcitations" = citation("knitcitations"),
"derfinder" = citation("derfinder"),
"GenomicRanges" = citation("GenomicRanges"),
"DESeq" = citation("DESeq"),
- "rCharts" = citation("rCharts"),
+ "DT" = citation("DT"),
"ggplot2" = citation("ggplot2"),
- "knitrBootstrap" = citation("knitrBootstrap"),
'rmarkdown' = citation('rmarkdown'),
'knitr' = citation('knitr')[3],
'eff' = RefManageR::BibEntry('manual', key = 'eff', title = 'Efficiency analysis of Sun Grid Engine batch jobs', author = 'Alyssa Frazee', year = 2014, url = 'http://dx.doi.org/10.6084/m9.figshare.878000'),
@@ -51,14 +49,14 @@ system('cp ../../efficiency_analytics/client_secrets .')
system('python ../../efficiency_analytics/analyze_efficiency.py --email fellgernon@gmail.com --folder "Cluster/derSoftware" --outfile timing-derSoftware.txt')
```
-```{r loadLibs, bootstrap.show.code=FALSE, warning = FALSE}
+```{r loadLibs, warning = FALSE}
## Load libraries
library("ggplot2")
library("knitr")
```
-```{r process, bootstrap.show.code=FALSE}
+```{r process}
## Setup
## Define number of cores used
@@ -134,7 +132,7 @@ The following plots show the wall time and memory used by each job while taking
Points are colored by which analysis type they belong to. Note that the loading data step is required for the single-level and expressed-regions DER approaches as well as exon counting (with derfinder).
-```{r edaAnalysis, fig.width=10, bootstrap.show.code=FALSE}
+```{r edaAnalysis, fig.width=10, fig.height=7}
## Walltime and memory adjusted by number of cores (it's an approximation)
ggplot(all, aes(x=timeByCore, y=memByCore, colour=analysis, shape=software)) + geom_point(size = 3) + facet_grid(~ experiment) + xlab("Wall time (hrs) multiplied by the number of cores") + ylab("Memory (GB) divided by the number of cores") + scale_colour_brewer(palette="Dark2") + theme_bw(base_size = 18) + theme(legend.position=c(.5, .75), legend.box = 'horizontal')
ggplot(all, aes(x=log2(timeByCore), y=memByCore, colour=analysis, shape=software)) + geom_point(size = 3) + facet_grid(~ experiment) + xlab("Wall time (hrs) multiplied by the number of cores (log2)") + ylab("Memory (GB) divided by the number of cores") + scale_colour_brewer(palette="Dark2") + theme_bw(base_size = 18) + theme(legend.position=c(.5, .75), legend.box = 'horizontal')
@@ -150,7 +148,7 @@ dev.off()
## Resources by step for each analysis
-```{r 'analysisSummary', bootstrap.show.code=FALSE}
+```{r 'analysisSummary'}
getInfo <- function(df, sumTime = FALSE, peakCores = FALSE) {
memByCore <- max(df$memByCore)
walltime <- ifelse(sumTime, sum(df$walltime), max(df$walltime))
@@ -194,13 +192,13 @@ analysisSummary <- do.call(rbind, analysisSummary)
The table shown below shows per analysis the maximum memory used by a job and maximum wall time for that step. This is assuming that all jobs for a given step ran simultaneously. For example, that all jobs running `derfinder::analyzeChr()` were running at the same time. Note that for some analyses relied on the same steps, like loading the data (_fullCov_). This table can be useful to find the peak number of cores (the sum of cores for all jobs running simultaneously) for a given analysis step.
-```{r 'analysisSumTab', results = 'asis', bootstrap.show.code=FALSE}
-kable(analysisSummary, format = 'html', digits = c(2, 4, 2))
+```{r 'analysisSumTab', results = 'asis'}
+kable(analysisSummary, format = 'markdown', digits = c(2, 4, 2))
```
## Resources for each analysis
-```{r 'peakSummary', bootstrap.show.code=FALSE}
+```{r 'peakSummary'}
## Summary the information for each analysis
peaks <- lapply(names(analysisInfo), function(analysis) {
res_analysis <- lapply(exps, function(exp) {
@@ -223,8 +221,8 @@ We can further summarize the resources used by each analysis by identified the m
The table below shows the final summary. Note that in some analyses, the peak memory is from the _fullCov_ step. We did not focus on reducing the memory load of this step as we sacrificed memory for speed. We know that much lower memory limits can be achieved using 1 core instead of the 10 cores used.
-```{r 'peakSumTab', bootstrap.show.code=FALSE, results = 'asis'}
-kable(peaks, format = 'html', digits = c(2, 3, 2))
+```{r 'peakSumTab', results = 'asis'}
+kable(peaks, format = 'markdown', digits = c(2, 3, 2))
```
Regarding the high memory load for the HTML report, this could be significantly lowered by only loading the required coverage data used for the plots instead of the full output from the _fullCov_ step. That is, using the _which_ argument from `fullCoverage()` to create a much smaller _fullCov_ object, which would also reduce the memory used when plotting.
@@ -267,34 +265,28 @@ These are the following analysis steps:
1. __PNAS__ (Only for _Hippo_) Generate an HTML report comparing the derfinder results vs previously published results (PNAS paper).
1. __summInfo__ Summarize results to then use then in the derfinder software paper.
-
-
-
-```{r tables, results="asis", bootstrap.show.code=FALSE}
-library("rCharts")
-library("data.table")
+```{r tables, results="asis"}
+library("DT")
## Print whole table
-d <- data.table(all[, c("experiment", "step", "walltime", "cores", "memG", "timeByCore", "memByCore", "software", "analysis", "jobid")])
-t1 <- dTable(d, sPaginationType='full_numbers', iDisplayLength=50, sScrollX='100%')
-t1$print("timing", cdn=TRUE)
+d <- all[, c("experiment", "step", "walltime", "cores", "memG", "timeByCore", "memByCore", "software", "analysis", "jobid")]
+datatable(d, options = list(pagingType='full_numbers', pageLength=50, scrollX='100%')) %>% formatRound(columns = c(3, 5:7), digits = 3)
```
-
-Table made using `rCharts` `r citep(bib[["rCharts"]])`.
+Table made using `DT` `r citep(bib[["DT"]])`.
# Reproducibility
Date the report was generated.
-```{r reproducibility1, echo=FALSE, bootstrap.show.code=FALSE}
+```{r reproducibility1, echo=FALSE}
## Date the report was generated
Sys.time()
```
Wallclock time spent generating the report.
-```{r "reproducibility2", echo=FALSE, bootstrap.show.code=FALSE}
+```{r "reproducibility2", echo=FALSE}
## Processing time in seconds
totalTime <- diff(c(startTime, Sys.time()))
round(totalTime, digits=3)
@@ -302,7 +294,7 @@ round(totalTime, digits=3)
`R` session information.
-```{r "reproducibility3", echo=FALSE, bootstrap.show.code=FALSE, bootstrap.show.message=FALSE}
+```{r "reproducibility3", echo=FALSE}
## Session info
options(width=120)
devtools::session_info()
@@ -310,8 +302,7 @@ devtools::session_info()
# Bibliography
-This report was generated using `knitrBootstrap` `r citep(bib[['knitrBootstrap']])`
-with `knitr` `r citep(bib[['knitr']])` and `rmarkdown` `r citep(bib[['rmarkdown']])` running behind the scenes. Timing information extracted from the SGE reports using `efficiency analytics` `r citep(bib[["eff"]])`. Figures and citations were made using `ggplot2` `r citep(bib[["ggplot2"]])` and `knitcitations` `r citep(bib[['knitcitations']])` respectively.
+This report was generated using `rmarkdown` `r citep(bib[['rmarkdown']])` with `knitr` `r citep(bib[['knitr']])` running behind the scenes. Timing information extracted from the SGE reports using `efficiency analytics` `r citep(bib[["eff"]])`. Figures and citations were made using `ggplot2` `r citep(bib[["ggplot2"]])` and `knitcitations` `r citep(bib[['knitcitations']])` respectively.
Citation file: [timing.bib](timing.bib)
diff --git a/timing/timing.bib b/timing/timing.bib
index 49ad4ea..8c7f971 100644
--- a/timing/timing.bib
+++ b/timing/timing.bib
@@ -48,11 +48,12 @@ @Article{anders2010differential
url = {http://genomebiology.com/2010/11/10/R106/},
}
-@Manual{vaidyanathan2013rcharts,
- title = {rCharts: Interactive Charts using Javascript Visualization Libraries},
- author = {Ramnath Vaidyanathan},
- year = {2013},
- note = {R package version 0.4.5},
+@Manual{xie2015wrapper,
+ title = {DT: A Wrapper of the JavaScript Library 'DataTables'},
+ author = {Yihui Xie},
+ year = {2015},
+ note = {R package version 0.1},
+ url = {http://CRAN.R-project.org/package=DT},
}
@Book{wickham2009ggplot2,
@@ -64,19 +65,11 @@ @Book{wickham2009ggplot2
url = {http://had.co.nz/ggplot2/book},
}
-@Manual{hester2014knitrbootstrap,
- title = {knitrBootstrap: Knitr Bootstrap framework.},
- author = {Jim Hester},
- year = {2014},
- note = {R package version 1.0.0},
- url = {https://github.com/jimhester/},
-}
-
@Manual{allaire2016rmarkdown,
title = {rmarkdown: Dynamic Documents for R},
author = {JJ Allaire and Joe Cheng and Yihui Xie and Jonathan McPherson and Winston Chang and Jeff Allen and Hadley Wickham and Aron Atkins and Rob Hyndman},
year = {2016},
- note = {R package version 0.9.2},
+ note = {R package version 0.9.5},
url = {http://CRAN.R-project.org/package=rmarkdown},
}
diff --git a/timing/timing.html b/timing/timing.html
index 345c9ab..b31e9fe 100644
--- a/timing/timing.html
+++ b/timing/timing.html
@@ -1,917 +1,258 @@
-
+
+
+
This report shows the time and memory used to run derfinder
for single base resolution differential expression analysis. It also shows the same information for going from BAM files to getting ready to run DESeq
(Anders and Huber, 2010) by using samtools
(, 2016) to convert to SAM format and HTSeq
(, 2014) to make the count tables. Furthermore, this process was compared to using the summarizeOverlaps()
function from the GenomicRanges
(Lawrence, Huber, Pagès, Aboyoun, et al., 2013) package as well as using the coverageToExon()
function included in the derfinder
package [requires the output from the fullCov step].
The following plots show the wall time and memory used by each job while taking into account the number of cores used by each job. Note that doing so is a crude approximation of how much time and memory each job would have needed had it ran on a single node.
Points are colored by which analysis type they belong to. Note that the loading data step is required for the single-level and expressed-regions DER approaches as well as exon counting (with derfinder).
- + -The table shown below shows per analysis the maximum memory used by a job and maximum wall time for that step. This is assuming that all jobs for a given step ran simultaneously. For example, that all jobs running derfinder::analyzeChr()
were running at the same time. Note that for some analyses relied on the same steps, like loading the data (fullCov). This table can be useful to find the peak number of cores (the sum of cores for all jobs running simultaneously) for a given analysis step.
kable(analysisSummary, format = 'markdown', digits = c(2, 4, 2))
-memByCore - | --walltime - | --memG - | --peakCores - | --step - | --experiment - | --analysis - | +
---|---|---|---|---|---|---|
memByCore | +walltime | +memG | +peakCores | +step | +experiment | +analysis |
-1.32 - | --0.0492 - | --1.32 - | --1 - | --derM - | --hippo - | --Single-base DER - | -
-3.90 - | --0.9697 - | --7.80 - | --48 - | --derA - | --hippo - | --Single-base DER - | -
-3.25 - | --0.0222 - | --3.25 - | --1 - | --derMod - | --hippo - | --Single-base DER - | -
-1.29 - | --0.1967 - | --12.91 - | --10 - | --fullCov - | --hippo - | --Single-base DER - | -
-4.39 - | --1.2494 - | --4.39 - | --1 - | --derM - | --snyder - | --Single-base DER - | -
-5.14 - | --2.3453 - | --20.55 - | --96 - | --derA - | --snyder - | --Single-base DER - | -
-7.02 - | --0.0558 - | --7.02 - | --2 - | --derMod - | --snyder - | --Single-base DER - | -
-2.71 - | --1.2539 - | --27.10 - | --10 - | --fullCov - | --snyder - | --Single-base DER - | -
-2.07 - | --0.2442 - | --10.33 - | --5 - | --regMat - | --hippo - | --Expressed-region DER - | -
-1.29 - | --0.1967 - | --12.91 - | --10 - | --fullCov - | --hippo - | --Expressed-region DER - | -
-5.32 - | --1.1131 - | --26.62 - | --5 - | --regMat - | --snyder - | --Expressed-region DER - | -
-2.71 - | --1.2539 - | --27.10 - | --10 - | --fullCov - | --snyder - | --Expressed-region DER - | -
-36.46 - | --0.8094 - | --36.46 - | --1 - | --derR - | --hippo - | --HTML report - | -
-37.20 - | --0.4836 - | --37.20 - | --1 - | --derR - | --snyder - | --HTML report - | -
-1.29 - | --0.1967 - | --12.91 - | --10 - | --fullCov - | --hippo - | --Exon count - derfinder - | -
-11.16 - | --0.6286 - | --11.16 - | --2 - | --covToEx - | --hippo - | --Exon count - derfinder - | -
-2.71 - | --1.2539 - | --27.10 - | --10 - | --fullCov - | --snyder - | --Exon count - derfinder - | -
-16.20 - | --0.7375 - | --16.20 - | --2 - | --covToEx - | --snyder - | --Exon count - derfinder - | -
-0.38 - | --0.5672 - | --0.38 - | --31 - | --htseq - | --hippo - | --Exon count - HTSeq - | -
-1.73 - | --3.7153 - | --1.73 - | --1 - | --toSam - | --hippo - | --Exon count - HTSeq - | -
-0.38 - | --7.8933 - | --0.38 - | --20 - | --htseq - | --snyder - | --Exon count - HTSeq - | -
-1.44 - | --42.0253 - | --1.44 - | --1 - | --toSam - | --snyder - | --Exon count - HTSeq - | -
-1.80 - | --0.2967 - | --43.24 - | --24 - | --summOv - | --hippo - | --Exon count - GenomicRanges - | -
-6.32 - | --2.6850 - | --63.24 - | --10 - | --summOv - | --snyder - | --Exon count - GenomicRanges - | +
1.32 | +0.0492 | +1.32 | +1 | +derM | +hippo | +Single-base DER | +
3.90 | +0.9697 | +7.80 | +48 | +derA | +hippo | +Single-base DER | +
3.25 | +0.0222 | +3.25 | +1 | +derMod | +hippo | +Single-base DER | +
1.29 | +0.1967 | +12.91 | +10 | +fullCov | +hippo | +Single-base DER | +
4.39 | +1.2494 | +4.39 | +1 | +derM | +snyder | +Single-base DER | +
5.14 | +2.3453 | +20.55 | +96 | +derA | +snyder | +Single-base DER | +
7.02 | +0.0558 | +7.02 | +2 | +derMod | +snyder | +Single-base DER | +
2.71 | +1.2539 | +27.10 | +10 | +fullCov | +snyder | +Single-base DER | +
2.07 | +0.2442 | +10.33 | +5 | +regMat | +hippo | +Expressed-region DER | +
1.29 | +0.1967 | +12.91 | +10 | +fullCov | +hippo | +Expressed-region DER | +
5.32 | +1.1131 | +26.62 | +5 | +regMat | +snyder | +Expressed-region DER | +
2.71 | +1.2539 | +27.10 | +10 | +fullCov | +snyder | +Expressed-region DER | +
36.46 | +0.8094 | +36.46 | +1 | +derR | +hippo | +HTML report | +
37.20 | +0.4836 | +37.20 | +1 | +derR | +snyder | +HTML report | +
1.29 | +0.1967 | +12.91 | +10 | +fullCov | +hippo | +Exon count - derfinder | +
11.16 | +0.6286 | +11.16 | +2 | +covToEx | +hippo | +Exon count - derfinder | +
2.71 | +1.2539 | +27.10 | +10 | +fullCov | +snyder | +Exon count - derfinder | +
16.20 | +0.7375 | +16.20 | +2 | +covToEx | +snyder | +Exon count - derfinder | +
0.38 | +0.5672 | +0.38 | +31 | +htseq | +hippo | +Exon count - HTSeq | +
1.73 | +3.7153 | +1.73 | +1 | +toSam | +hippo | +Exon count - HTSeq | +
0.38 | +7.8933 | +0.38 | +20 | +htseq | +snyder | +Exon count - HTSeq | +
1.44 | +42.0253 | +1.44 | +1 | +toSam | +snyder | +Exon count - HTSeq | +
1.80 | +0.2967 | +43.24 | +24 | +summOv | +hippo | +Exon count - GenomicRanges | +
6.32 | +2.6850 | +63.24 | +10 | +summOv | +snyder | +Exon count - GenomicRanges |
We can further summarize the resources used by each analysis by identified the maximum memory used in the steps required for a particular analysis and the total wall time for running all the steps when all the jobs of a particular step are running simultaneously. Thus giving us the total actual wall time to run a specific analysis and the maximum memory required.
The table below shows the final summary. Note that in some analyses, the peak memory is from the fullCov step. We did not focus on reducing the memory load of this step as we sacrificed memory for speed. We know that much lower memory limits can be achieved using 1 core instead of the 10 cores used.
-kable(peaks, format = 'markdown', digits = c(2, 3, 2))
-memByCore - | --walltime - | --memG - | --peakCores - | --experiment - | --analysis - | +
---|---|---|---|---|---|
memByCore | +walltime | +memG | +peakCores | +experiment | +analysis |
-3.90 - | --1.238 - | --12.91 - | --48 - | --hippo - | --Single-base DER - | -
-7.02 - | --4.904 - | --27.10 - | --96 - | --snyder - | --Single-base DER - | -
-2.07 - | --0.441 - | --12.91 - | --10 - | --hippo - | --Expressed-region DER - | -
-5.32 - | --2.367 - | --27.10 - | --10 - | --snyder - | --Expressed-region DER - | -
-36.46 - | --0.809 - | --36.46 - | --1 - | --hippo - | --HTML report - | -
-37.20 - | --0.484 - | --37.20 - | --1 - | --snyder - | --HTML report - | -
-11.16 - | --0.825 - | --12.91 - | --10 - | --hippo - | --Exon count - derfinder - | -
-16.20 - | --1.991 - | --27.10 - | --10 - | --snyder - | --Exon count - derfinder - | -
-1.73 - | --4.283 - | --1.73 - | --31 - | --hippo - | --Exon count - HTSeq - | -
-1.44 - | --49.919 - | --1.44 - | --20 - | --snyder - | --Exon count - HTSeq - | -
-1.80 - | --0.297 - | --43.24 - | --24 - | --hippo - | --Exon count - GenomicRanges - | -
-6.32 - | --2.685 - | --63.24 - | --10 - | --snyder - | --Exon count - GenomicRanges - | +
3.90 | +1.238 | +12.91 | +48 | +hippo | +Single-base DER | +
7.02 | +4.904 | +27.10 | +96 | +snyder | +Single-base DER | +
2.07 | +0.441 | +12.91 | +10 | +hippo | +Expressed-region DER | +
5.32 | +2.367 | +27.10 | +10 | +snyder | +Expressed-region DER | +
36.46 | +0.809 | +36.46 | +1 | +hippo | +HTML report | +
37.20 | +0.484 | +37.20 | +1 | +snyder | +HTML report | +
11.16 | +0.825 | +12.91 | +10 | +hippo | +Exon count - derfinder | +
16.20 | +1.991 | +27.10 | +10 | +snyder | +Exon count - derfinder | +
1.73 | +4.283 | +1.73 | +31 | +hippo | +Exon count - HTSeq | +
1.44 | +49.919 | +1.44 | +20 | +snyder | +Exon count - HTSeq | +
1.80 | +0.297 | +43.24 | +24 | +hippo | +Exon count - GenomicRanges | +
6.32 | +2.685 | +63.24 | +10 | +snyder | +Exon count - GenomicRanges |
Regarding the high memory load for the HTML report, this could be significantly lowered by only loading the required coverage data used for the plots instead of the full output from the fullCov step. That is, using the which argument from fullCoverage()
to create a much smaller fullCov object, which would also reduce the memory used when plotting.
Note: since these analyses were done, we have found other ways to run derfinder::regionMatrix()
that require less memory. In particular, if you have BigWig files (as those generated by Rail-RNA
(Nellore, Collado-Torres, Jaffe, Alquicira-Hernández, et al., 2015)), we recommend using railMatrix()
.
Note: since these analyses were done, we have found other ways to run derfinder::regionMatrix()
that require less memory. In particular, if you have BigWig files (as those generated by Rail-RNA
(Nellore, Collado-Torres, Jaffe, Alquicira-Hernández, et al., 2015)), we recommend using railMatrix()
.
The previous table can also be used to compare the sum of the time and peak memory used by the different steps to obtain the exon count table with the following software options.
HTSeq
: includes resources used for generating sorted SAM files and then running HTSeq.summOv
: resources used for running GenomicRanges::summarizeOverlaps()
directly on the BAM files.The following table shows the details of the resources used by the different jobs. It shows the experiment (experiment), the analysis step (step), wall time used (shown in hours, walltime), number of cores used (cores), memory in GB used (memG), software used (software), analysis for which the step is used (analysis), and the job name (jobib). Furthermore, it shows two simple approximations:
Table made using DT
(Xie, 2015).
Table made using rCharts
(Vaidyanathan, 2013).
Date the report was generated.
-## [1] "2016-03-21 10:18:22 EDT"
-
-## [1] "2016-03-21 15:49:35 EDT"
Wallclock time spent generating the report.
-## Time difference of 4.892 secs
-
-## Time difference of 5.694 secs
R
session information.
## setting value
+## Session info -----------------------------------------------------------------------------------------------------------
+## setting value
## version R version 3.2.2 (2015-08-14)
## system x86_64, darwin13.4.0
## ui X11
## language (EN)
## collate en_US.UTF-8
## tz America/New_York
-## date 2016-03-21
-
-
-
-
-## package * version date source
-## bibtex 0.4.0 2014-12-31 CRAN (R 3.2.0)
-## bitops 1.0-6 2013-08-17 CRAN (R 3.2.0)
-## chron 2.3-47 2015-06-24 CRAN (R 3.2.1)
-## colorspace 1.2-6 2015-03-11 CRAN (R 3.2.0)
-## curl 0.9.6 2016-02-17 CRAN (R 3.2.3)
-## data.table * 1.9.6 2015-09-19 CRAN (R 3.2.0)
-## devtools 1.10.0 2016-01-23 CRAN (R 3.2.3)
-## digest 0.6.9 2016-01-08 CRAN (R 3.2.3)
-## evaluate 0.8 2015-09-18 CRAN (R 3.2.0)
-## formatR 1.2.1 2015-09-18 CRAN (R 3.2.0)
-## ggplot2 * 2.0.0 2015-12-18 CRAN (R 3.2.3)
-## gtable 0.1.2 2012-12-05 CRAN (R 3.2.0)
-## highr 0.5.1 2015-09-18 CRAN (R 3.2.0)
-## htmltools 0.3 2015-12-29 CRAN (R 3.2.3)
-## httr 1.1.0 2016-01-28 CRAN (R 3.2.3)
-## knitcitations * 1.0.7 2015-10-28 CRAN (R 3.2.0)
-## knitr * 1.12.3 2016-01-22 CRAN (R 3.2.3)
-## knitrBootstrap 1.0.0 2015-05-19 Github (jimhester/knitrBootstrap@76c41f0)
-## labeling 0.3 2014-08-23 CRAN (R 3.2.0)
-## lattice 0.20-33 2015-07-14 CRAN (R 3.2.2)
-## lubridate 1.5.0 2015-12-03 CRAN (R 3.2.3)
-## magrittr 1.5 2014-11-22 CRAN (R 3.2.0)
-## markdown 0.7.7 2015-04-22 CRAN (R 3.2.0)
-## memoise 1.0.0 2016-01-29 CRAN (R 3.2.3)
-## mime 0.4 2015-09-03 CRAN (R 3.2.0)
-## munsell 0.4.3 2016-02-13 CRAN (R 3.2.3)
-## plyr 1.8.3 2015-06-12 CRAN (R 3.2.1)
-## R6 2.1.2 2016-01-26 CRAN (R 3.2.3)
-## rCharts * 0.4.5 2015-05-19 Github (ramnathv/rCharts@389e214)
-## RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.2.0)
-## Rcpp 0.12.3 2016-01-10 CRAN (R 3.2.3)
-## RCurl 1.95-4.7 2015-06-30 CRAN (R 3.2.1)
-## RefManageR 0.10.6 2016-02-15 CRAN (R 3.2.3)
-## reshape2 1.4.1 2014-12-06 CRAN (R 3.2.0)
-## RJSONIO 1.3-0 2014-07-28 CRAN (R 3.2.0)
-## rmarkdown * 0.9.2 2016-01-01 CRAN (R 3.2.3)
-## scales 0.3.0 2015-08-25 CRAN (R 3.2.0)
-## stringi 1.0-1 2015-10-22 CRAN (R 3.2.0)
-## stringr 1.0.0 2015-04-30 CRAN (R 3.2.0)
-## whisker 0.3-2 2013-04-28 CRAN (R 3.2.0)
-## XML 3.98-1.3 2015-06-30 CRAN (R 3.2.0)
-## yaml 2.1.13 2014-06-12 CRAN (R 3.2.0)
-
+## date 2016-03-21
+## Packages ---------------------------------------------------------------------------------------------------------------
+## package * version date source
+## bibtex 0.4.0 2014-12-31 CRAN (R 3.2.0)
+## bitops 1.0-6 2013-08-17 CRAN (R 3.2.0)
+## colorspace 1.2-6 2015-03-11 CRAN (R 3.2.0)
+## curl 0.9.6 2016-02-17 CRAN (R 3.2.3)
+## devtools 1.10.0 2016-01-23 CRAN (R 3.2.3)
+## digest 0.6.9 2016-01-08 CRAN (R 3.2.3)
+## DT * 0.1 2015-06-09 CRAN (R 3.2.0)
+## evaluate 0.8 2015-09-18 CRAN (R 3.2.0)
+## formatR 1.2.1 2015-09-18 CRAN (R 3.2.0)
+## ggplot2 * 2.0.0 2015-12-18 CRAN (R 3.2.3)
+## gtable 0.1.2 2012-12-05 CRAN (R 3.2.0)
+## highr 0.5.1 2015-09-18 CRAN (R 3.2.0)
+## htmltools 0.3 2015-12-29 CRAN (R 3.2.3)
+## htmlwidgets 0.5 2015-06-21 CRAN (R 3.2.1)
+## httr 1.1.0 2016-01-28 CRAN (R 3.2.3)
+## jsonlite 0.9.19 2015-11-28 CRAN (R 3.2.2)
+## knitcitations * 1.0.7 2015-10-28 CRAN (R 3.2.0)
+## knitr * 1.12.3 2016-01-22 CRAN (R 3.2.3)
+## labeling 0.3 2014-08-23 CRAN (R 3.2.0)
+## lubridate 1.5.0 2015-12-03 CRAN (R 3.2.3)
+## magrittr 1.5 2014-11-22 CRAN (R 3.2.0)
+## memoise 1.0.0 2016-01-29 CRAN (R 3.2.3)
+## munsell 0.4.3 2016-02-13 CRAN (R 3.2.3)
+## plyr 1.8.3 2015-06-12 CRAN (R 3.2.1)
+## R6 2.1.2 2016-01-26 CRAN (R 3.2.3)
+## RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.2.0)
+## Rcpp 0.12.3 2016-01-10 CRAN (R 3.2.3)
+## RCurl 1.95-4.7 2015-06-30 CRAN (R 3.2.1)
+## RefManageR 0.10.6 2016-02-15 CRAN (R 3.2.3)
+## reshape2 1.4.1 2014-12-06 CRAN (R 3.2.0)
+## RJSONIO 1.3-0 2014-07-28 CRAN (R 3.2.0)
+## rmarkdown * 0.9.5 2016-02-22 CRAN (R 3.2.3)
+## scales 0.3.0 2015-08-25 CRAN (R 3.2.0)
+## stringi 1.0-1 2015-10-22 CRAN (R 3.2.0)
+## stringr 1.0.0 2015-04-30 CRAN (R 3.2.0)
+## XML 3.98-1.3 2015-06-30 CRAN (R 3.2.0)
+## yaml 2.1.13 2014-06-12 CRAN (R 3.2.0)
This report was generated using knitrBootstrap
(Hester, 2014) with knitr
(Xie, 2014) and rmarkdown
(Allaire, Cheng, Xie, McPherson, et al., 2016) running behind the scenes. Timing information extracted from the SGE reports using efficiency analytics
(Frazee, 2014). Figures and citations were made using ggplot2
(Wickham, 2009) and knitcitations
(Boettiger, 2015) respectively.
This report was generated using rmarkdown
(Allaire, Cheng, Xie, McPherson, et al., 2016) with knitr
(Xie, 2014) running behind the scenes. Timing information extracted from the SGE reports using efficiency analytics
(Frazee, 2014). Figures and citations were made using ggplot2
(Wickham, 2009) and knitcitations
(Boettiger, 2015) respectively.
Citation file: timing.bib
--[1] HTSeq: Analysing high-throughput sequencing data with Python — HTSeq 0.6.1p2 documentation. http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html. 2014. URL: http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html. +[1] HTSeq: Analysing high-throughput sequencing data with Python — HTSeq 0.6.1p2 documentation. http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html. 2014. URL: http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html.
-[2] SAMtools. http://samtools.sourceforge.net/. 2016. URL: http://samtools.sourceforge.net/. +[2] SAMtools. http://samtools.sourceforge.net/. 2016. URL: http://samtools.sourceforge.net/.
-[3] J. Allaire, J. Cheng, Y. Xie, J. McPherson, et al. rmarkdown: Dynamic Documents for R. R package version 0.9.2. 2016. URL: http://CRAN.R-project.org/package=rmarkdown. +[3] J. Allaire, J. Cheng, Y. Xie, J. McPherson, et al. rmarkdown: Dynamic Documents for R. R package version 0.9.5. 2016. URL: http://CRAN.R-project.org/package=rmarkdown.
-[4] S. Anders and W. Huber. “Differential expression analysis for sequence count data”. In: Genome Biology 11 (2010), p. R106. DOI: 10.1186/gb-2010-11-10-r106. URL: http://genomebiology.com/2010/11/10/R106/. +[4] S. Anders and W. Huber. “Differential expression analysis for sequence count data”. In: Genome Biology 11 (2010), p. R106. DOI: 10.1186/gb-2010-11-10-r106. URL: http://genomebiology.com/2010/11/10/R106/.
-[5] C. Boettiger. knitcitations: Citations for 'Knitr' Markdown Files. R package version 1.0.7. 2015. URL: http://CRAN.R-project.org/package=knitcitations. +[5] C. Boettiger. knitcitations: Citations for ‘Knitr’ Markdown Files. R package version 1.0.7. 2015. URL: http://CRAN.R-project.org/package=knitcitations.
-[6] A. Frazee. Efficiency analysis of Sun Grid Engine batch jobs. 2014. URL: http://dx.doi.org/10.6084/m9.figshare.878000. +[6] A. Frazee. Efficiency analysis of Sun Grid Engine batch jobs. 2014. URL: http://dx.doi.org/10.6084/m9.figshare.878000.
-[7] J. Hester. knitrBootstrap: Knitr Bootstrap framework. R package version 1.0.0. 2014. URL: https://github.com/jimhester/. -
--[8] M. Lawrence, W. Huber, H. Pagès, P. Aboyoun, et al. “Software for Computing and Annotating Genomic Ranges”. In: PLoS Computational Biology 9 (8 2013). DOI: 10.1371/journal.pcbi.1003118. URL: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118}. +[7] M. Lawrence, W. Huber, H. Pagès, P. Aboyoun, et al. “Software for Computing and Annotating Genomic Ranges”. In: PLoS Computational Biology 9 (8 2013). DOI: 10.1371/journal.pcbi.1003118. URL: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118}.
-[9] A. Nellore, L. Collado-Torres, A. E. Jaffe, J. Alquicira-Hernández, et al. “Rail-RNA: Scalable analysis of RNA-seq splicing and coverage”. In: bioRxiv (2015). +[8] A. Nellore, L. Collado-Torres, A. E. Jaffe, J. Alquicira-Hernández, et al. “Rail-RNA: Scalable analysis of RNA-seq splicing and coverage”. In: bioRxiv (2015).
-[10] R. Vaidyanathan. rCharts: Interactive Charts using Javascript Visualization Libraries. R package version 0.4.5. 2013. +[9] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN: 978-0-387-98140-6. URL: http://had.co.nz/ggplot2/book.
-[11] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN: 978-0-387-98140-6. URL: http://had.co.nz/ggplot2/book. +[10] Y. Xie. DT: A Wrapper of the JavaScript Library ‘DataTables’. R package version 0.1. 2015. URL: http://CRAN.R-project.org/package=DT.
-[12] Y. Xie. “knitr: A Comprehensive Tool for Reproducible Research in R”. In: Implementing Reproducible Computational Research. Ed. by V. Stodden, F. Leisch and R. D. Peng. ISBN 978-1466561595. Chapman and Hall/CRC, 2014. URL: http://www.crcpress.com/product/isbn/9781466561595. +[11] Y. Xie. “knitr: A Comprehensive Tool for Reproducible Research in R”. In: Implementing Reproducible Computational Research. Ed. by V. Stodden, F. Leisch and R. D. Peng. ISBN 978-1466561595. Chapman and Hall/CRC, 2014. URL: http://www.crcpress.com/product/isbn/9781466561595.