-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdata.py
491 lines (419 loc) · 17.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#!/usr/bin/env python
# encoding=utf8
import gc
import os
import csv
import json
import random
import hashlib
import numpy as np
import pandas as pd
from scipy import sparse
from collections import Counter
from scipy.sparse import csr_matrix
from collections import defaultdict
from collections import OrderedDict
User = ['appIdAction','appIdInstall','interest1','interest2','interest3','interest4','interest5','kw1','kw2','kw3','topic1','topic2','topic3','ct','marriageStatus','os']
Ad = ['aid']
User_Ad_idx = './datas/features/UA_idx.txt'
############################################
def mkdir(folder):
folder = './datas/features/%s' % folder
if not os.path.exists(folder):
os.makedirs(folder)
return folder
import gc
def getMerged(*keys, **kwargs):
kind = kwargs.get('kind', 0)
name1 = './datas/trainMerged.csv'
name2 = './datas/test1Merged.csv'
for name in [name1, name2]:
if os.path.exists(name): continue
print( "@@@@@", name)
ad = pd.read_csv('./datas/adFeature.csv')
if not os.path.exists(name.replace('Merged', '')):
continue
df = pd.read_csv(name.replace('Merged', ''))
user = pd.read_csv('./datas/userFeature.csv')
notUsed = ['appIdAction', 'appIdInstall']
user.drop(notUsed, axis=1, inplace=True)
df = df.merge(ad).merge(user)
if 'label' not in df: df['label'] = 0
columns = sorted(df.columns.tolist())
columns.remove('label'); columns.append('label')
df.to_csv(name, index=False, columns=columns)
print(' ok ',name)
del df,user
gc.collect()
print('merge ok')
# for name in [name1, name2]:
# df = pd.read_csv(name)
# notUsed = ['appIdAction', 'appIdInstall']
# if notUsed in df.columns:
# df.drop(notUsed, axis=1, inplace=True)
# if 'label' not in df: df['label'] = 0
# columns = sorted(df.columns.tolist())
# columns.remove('label'); columns.append('label')
# df.to_csv(name, index=False, columns=columns)
name3 = './datas/trainMerged1.csv'
name4 = './datas/trainMerged2.csv'
exists = os.path.exists
if not (exists(name3) and exists(name4)):
random.seed(2018)
#t1n, t2n = int(7e+6), int(1e+6)
df = pd.read_csv(name1)
t1n, t2n = int(0.7 * len(df)), int(0.3 * len(df))
indices = list(range(len(df)))
#random.shuffle(indices)
indices3 = indices[:t1n]
indices4 = indices[-t2n:]
columns = sorted(df.columns.tolist())
columns.remove('label'); columns.append('label')
df.take(indices3).to_csv(
name3, index=False, columns=columns)
df.take(indices4).to_csv(
name4, index=False, columns=columns)
del df
gc.collect()
print('merge ok')
if not keys: keys = None
if kind==1: return pd.read_csv(name1, usecols=keys)
if kind==2: return pd.read_csv(name2, usecols=keys)
if kind==0: return pd.concat([
pd.read_csv(name1, usecols=keys),
pd.read_csv(name2, usecols=keys)
], axis=0)
if kind==3: return pd.read_csv(name3, usecols=keys)
if kind==4: return pd.read_csv(name4, usecols=keys)
def getMergedA(*keys, **kwargs):
kind = kwargs.get('kind', 0)
name1 = './datas/trainMergedA.csv'
name2 = './datas/test1MergedA.csv'
for name in [name1, name2]:
if os.path.exists(name): continue
ad = pd.read_csv('./datas/adFeature.csv')
df = pd.read_csv(name.replace('Merged', ''))
user = pd.read_csv('./datas/userFeature.csv')
df = df.merge(ad).merge(user)
if 'label' not in df: df['label'] = 0
columns = sorted(df.columns.tolist())
columns.remove('label'); columns.append('label')
df.to_csv(name, index=False, columns=columns)
if not keys: keys = None
if kind==1: return pd.read_csv(name1, usecols=keys)
if kind==2: return pd.read_csv(name2, usecols=keys)
if kind==0: return pd.concat([
pd.read_csv(name1, usecols=keys),
pd.read_csv(name2, usecols=keys),
], axis=0)
############################################
def getUF():
name = './datas/userFeature.data'
for f in open(name):
user = {}
for uf in f.strip().split('|'):
uf = uf.split(' ')
user[uf[0]] = list(map(int, uf[1:]))
yield user
def userMaxLen():
folder = mkdir('msg')
maxLen = defaultdict(int)
maxFile = '%s/maxLen.txt' % folder
if not os.path.exists(maxFile):
for i, user in enumerate(getUF()):
for key, vs in user.items():
maxLen[key] = max(maxLen[key], len(list(vs)))
with open(maxFile, 'w') as f:
for k in sorted(maxLen.keys()):
f.write('%s %s\n' % (k, maxLen[k]))
#print( 'Saved to %s ...' % saveName)
for line in open(maxFile):
k, v = line.strip().split()
maxLen[k] = int(v)
return maxLen
def userFeature():
default = { k: 0 for k in userMaxLen() }
keys = sorted(default.keys())
keys.remove('uid'); keys = ['uid'] + keys
saveName = './datas/userFeature.csv'
if os.path.exists(saveName): return
with open(saveName, 'w') as sf:
dw = csv.DictWriter(sf, fieldnames=keys)
dw.writeheader()
for i, user in enumerate(getUF()):
data = default.copy()
for key, vs in user.items():
data[key] = ' '.join(list(map(str,vs)))
dw.writerow(data)
if (i+1) % 100000 == 0:
print( "%8d..." % (i+1))
print( 'Saved to %s ...' % saveName)
############################################
def getFFM():
print( 'start getFFM()')
folder = mkdir('ffm')
datas = [
['trainMerged', 'trainFFM'],
['test1Merged', 'testFFM'],
]
print( 'start get FFM data in getFFM()')
result, flag = [], True
for _, save in datas:
save = '%s/%s.txt' % (folder, save)
result.append(save)
if not os.path.exists(save):
flag = False
if flag:
return result
count, _ = setCount()#return the dict-->{feat:{onehot : index}} and the number of dim
fields = sorted(count.keys())
UA_idx, User_idx, Ad_idx = open(User_Ad_idx, 'w'), '', ''
for k, v in enumerate(fields):
if v in User:
User_idx += ' '+str(k)
elif v in Ad:
Ad_idx += ' '+str(k)
if not UA_idx.closed:
UA_idx.write('%s\n' % User_idx)
UA_idx.write('%s\n' % Ad_idx)
UA_idx.close()
result = []
for name, save in datas:
print( 'start gen data ', save)
save = '%s/%s.txt' % (folder, save)
result.append(save)
if os.path.exists(save): continue
txt = open(save, 'w')
name = './datas/%s.csv' % name
for i, line in enumerate(open(name)):#for the merged df
vvs = line.strip().split(',')
if i == 0: fNs = vvs; continue#fns feature name
s = ''
for k, vs in enumerate(vvs):#vvs value of this line
if fNs[k] == 'label':
s = ('%d'%(vs=='1')) + s#replace the -1 label to 0
continue
ii = fields.index(fNs[k])#index of the feature
for v in vs.split(' '):#all value of one feature
try:
float(v)
except:
continue
v = str(int(float(v)))
c = count[fNs[k]][v]#index of the value in his feature
# try:
# float(v)
# except:
# continue
# if float(v) and c:
if int(float(v)) and c:
s += ' %d:%d:1' % (ii, c)#特征index 总体取值index 1131,0直空值过滤了(这不一定合理
txt.write('%s\n' % s)
txt.close()
print( 'Saved to %s ...' % save)
return result
def splitFFM():
t1, save3 = getFFM()#get conut path(train ,test ) of file which have fomat (index of feature : index fo all dim : 1)
folder = mkdir('ffm')
exists = os.path.exists
save1 = '%s/t1.txt' % folder
save2 = '%s/t2.txt' % folder
if exists(save1) and exists(save2):
return save1, save2, save3
random.seed(2018)
lines = open(t1).readlines()#read the tranFFM
#random.shuffle(lines)
#t1n, t2n = int(7e+6), int(1e+6)
t1n, t2n = int(0.7 * len(lines)), int(0.3 * len(lines))
print( 'start gen train valid data')
with open(save1, 'w') as txt:
txt.writelines(lines[:t1n])
print( 'Saved to %s ...' % save1)
with open(save2, 'w') as txt:
txt.writelines(lines[-t2n:])
print( 'Saved to %s ...' % save2)
return save1, save2, save3
def getCount():
'''count values for every column,
when dtype==O, expend it'''
folder = mkdir('msg')
saveName = '%s/counts.json' % folder
print( 'start take get counts.json')
if os.path.exists(saveName):
print( 'getCount already done!!')
return json.load(open(saveName))
datas = OrderedDict()
print( 'start get merged data')
df = getMerged(kind=0)#.drop('label', 1)
del df['label']
gc.collect()
for fn in df:
gc.collect()
print( 'start count', fn)
if df[fn].dtype == 'object':
# df_cnt = pd.DataFrame()
# r = ' '.join( df[fn].dropna().tolist() )
# df_cnt[fn] = r.split(' ')
# datas[fn] = df_cnt[fn].value_counts().to_dict()
df[fn] = df[fn].astype(str)
d, ds = [], df[fn].str.split(' ', expand=False)
for s in ds: d.extend(list(map(int, s)))
datas[fn] = Counter(d)
else:
#datas[fn] = df[fn].dropna().astype('int').value_counts().to_dict()
datas[fn] = Counter(df[fn])
del df[fn]
json.dump(datas, open(saveName, 'w'))
print( 'Saved to %s ...' % saveName)
return datas
def setCount():
print( 'start setCount')
count = getCount()#每个特征一个field,a dict of dict [('lbs',{value:count})]
fields = sorted(count.keys())#list of feature['lbs',''...]
offset = 0
for k in fields:
print( 'get %s fields in var range' % k)
t = 100 if k=='uid' else 100#threshold of every feature
temp = OrderedDict(#one col feature's dic--> value : count
sorted(
count[k].items(),#return the tuple of dict
reverse=1, key=lambda i: i[1],#sort by i[1]
)
)
count[k] = defaultdict( int, {#dict --> {feat:{value : index}}
str(u): i+1+offset
for i, u in enumerate(temp)
if temp[u]>=t and int(float(u))!=0
})#低于100的过滤掉了,给key对应自己index!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!all mass for this op
offset += len(count[k])
print('setcount ok')
return count, offset#return the dict and the number of dim
def getFFMDim():
print( 'start getFFMdim()')
t1, t2, t3 = splitFFM()#get the train ,validate , test FFMfile(::)
print( 'end splitFFM()')
UA_idx = open(User_Ad_idx,'r')
User, Ad = UA_idx.readline().strip().split(' '), UA_idx.readline().strip().split(' ')
UA_idx.close()
folder = mkdir('msg')
saveName = '%s/ffmDim.csv' % folder
if os.path.exists(saveName):
df = pd.read_csv(saveName)
return OrderedDict(
zip(df.columns, df.values[0])), User, Ad
datas = defaultdict(int)
for t in [t1, t2, t3]:
print( 'start countFFMDim in [%s]' % t)
for line in open(t):
temp = defaultdict(int)
s = line.strip().split(' ')
fs = map(int, map(
lambda x: x.split(':')[0], s[1:]))
for f in fs: temp['field#%03d'%f] += 1
for key in temp:#number of value of each field
datas[key] = max(temp[key], datas[key])#所有数据中每一行中出现该field次数最大数,也就是每个特征每行取值最大个数
for key in datas:
datas[key] = [datas[key]]
pd.DataFrame.from_dict(datas).to_csv(
saveName, index=False, columns=sorted(datas.keys()))
print( 'Saved to %s ...' % saveName)
return OrderedDict([
(k, datas[k][0]) for k in sorted(datas.keys())]), User, Ad#return the dimlist in witch include the max val_num of the col
def getSparse():
offsets = [0]#every field's begin index
ffmDim, _, _ = getFFMDim()
for k in sorted(ffmDim.keys()):
offsets.append(offsets[-1]+ffmDim[k])
print( 'start splitFFM')
t1, t2, t3 = splitFFM()#get the train ,validate , test FFMfile(::)
print( 'start genFFM data')
folder = mkdir('ffm')
save1 = '%s/t1X.npz' % folder
save2 = '%s/t2X.npz' % folder
save3 = '%s/testX.npz' % folder
ydfs = [
[t1, save1], [t2, save2], [t3, save3],
]
flag = True
for t, save in ydfs:
if not os.path.exists(save):
flag = False
if flag: return save1, save2, save3
print( 'end genFFM data')
#data, indices, indptr = [], [], [0]#data, indices, indptr ::index of 1131 of all of each line,每个非0元素行内相对位置,这行多少个元素(起始index
print( 'start gen sparse matrix data')
for k, (t, save) in enumerate(ydfs):
print( 'processing[%d], libsvm src[%s], npz dest[%s]' % (k, t, save))
ydfs[k].append(0)
data, indices, indptr = [], [], [0] # data, indices, indptr ::index of 1131 of all of each line,每个非0元素行内相对位置,这行多少个元素(起始index
for line_number, line in enumerate(open(t)):
ydfs[k][-1] += 1#line num of this file
s = line.strip().split(' ') # label field:key:value
# value is always 1
i = list(map(int, s[:1] + list(map(
lambda x: x.split(':')[1], s[1:])))) #get index
fs = list(map(int, list(map(
lambda x: x.split(':')[0], s[1:])))) #get field
data.extend(i) #VALUE IN EVERY ROW
indices.append(0)
ios = [0] * (len(offsets)) # offset存每个field的特征数目
#print 'start process line[%s]' % line_number
#print 'len(ios) is:', len(ios)
#print ios[29]
#print 'max(fs) is:', np.max(fs)
#print 'fs is:', fs
#fs = list(set(fs))
for f in fs:
ios[f] += 1#value num of this line
#print('error:',len(offsets),len(ios),f)
indices.append(offsets[f] + ios[f]) #每个非0元素行内相对位置
#print 'ios is:', ios
#print 'indices is:', indices
#data.extend(i)
indptr.append(indptr[-1] + len(i)) #这一行到哪个元素
rows, cols = len(indptr) - 1, np.max(indices) + 1
csr = csr_matrix((data, indices, indptr), shape=(rows, cols)) #
t, save, l = ydfs[k]
sparse.save_npz(save, csr[:-1], compressed=True)
# rows, cols = len(indptr)-1, np.max(indices)+1
# '''
# csr_matrix((data, indices, indptr), [shape=(M, N)])
# is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
# indptr表示某一行在data中的range,indices表示每条数据在第几列
# '''
# csr = csr_matrix(
# (data, indices, indptr), shape=(rows, cols))#data, indices, indptr ::index of 1131 of all of each line,每个非0元素行内相对位置,这行多少个元素(起始index
#
# start, end = 0, 0
# for t, save, l in ydfs:
# start, end = end, end + l
# sparse.save_npz(
# save, csr[start:end], compressed=True)
print( 'end gen sparse matrix data')
return save1, save2, save3
def loadSparse(kind):
return sparse.load_npz(getSparse()[kind])
############################################
from sklearn.preprocessing import LabelEncoder
if __name__ == '__main__':
#userFeature
mytype = {'uid': np.uint16, 'LBS': np.uint16, 'adCategoryId': np.uint16, 'advertiserId': np.uint16,
'age': np.uint16, 'aid': np.uint16, 'campaignId': np.uint16,
'carrier': np.uint16, 'consumptionAbility': np.uint16, 'creativeId': np.uint16, 'creativeSize': np.uint16,
'ct': object, 'education': np.uint16, 'gender': np.uint16, 'house': np.uint16, 'interest1': object,
'interest2': object, 'interest3': object, 'interest4': object, 'interest5': object, 'kw1': object,
'kw2': object, 'kw3': object, 'marriageStatus': object, 'os': object, 'productId': np.uint16,
'productType': np.uint16, 'topic1': object, 'topic2': object, 'topic3': object, 'label': np.int8,
'appIdAction': object, 'appIdInstall': object}
# df = pd.read_csv('./datas/8g/8g.csv', header=0, iterator=True,dtype=mytype, usecols=mytype.keys())
# data = df.get_chunk(80000)
# data.to_csv('./datas/trainMerged.csv',index=False)
# data = df.get_chunk(20000)
# data.to_csv('./datas/test1Merged.csv', index=False)
# print('data ok')
# del data
# gc.collect()
print(getFFM())
print(setCount()[1])
loadSparse(0)
#os.system('python3 nn.py 1 0 test 0')