forked from klauspost/crc32
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrc32.go
178 lines (149 loc) · 4.76 KB
/
crc32.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
// checksum. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for
// information.
//
// Polynomials are represented in LSB-first form also known as reversed representation.
//
// See http://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
// for information.
package crc32
import (
"hash"
"sync"
)
// The size of a CRC-32 checksum in bytes.
const Size = 4
// Predefined polynomials.
const (
// IEEE is by far and away the most common CRC-32 polynomial.
// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
IEEE = 0xedb88320
// Castagnoli's polynomial, used in iSCSI.
// Has better error detection characteristics than IEEE.
// http://dx.doi.org/10.1109/26.231911
Castagnoli = 0x82f63b78
// Koopman's polynomial.
// Also has better error detection characteristics than IEEE.
// http://dx.doi.org/10.1109/DSN.2002.1028931
Koopman = 0xeb31d82e
)
// Table is a 256-word table representing the polynomial for efficient processing.
type Table [256]uint32
// castagnoliTable points to a lazily initialized Table for the Castagnoli
// polynomial. MakeTable will always return this value when asked to make a
// Castagnoli table so we can compare against it to find when the caller is
// using this polynomial.
var castagnoliTable *Table
var castagnoliOnce sync.Once
func castagnoliInit() {
castagnoliTable = makeTable(Castagnoli)
}
// IEEETable is the table for the IEEE polynomial.
var IEEETable = makeTable(IEEE)
// slicing8Table is array of 8 Tables
type slicing8Table [8]Table
// iEEETable8 is the slicing8Table for IEEE
var iEEETable8 *slicing8Table
var iEEETable8Once sync.Once
// MakeTable returns the Table constructed from the specified polynomial.
func MakeTable(poly uint32) *Table {
switch poly {
case IEEE:
return IEEETable
case Castagnoli:
castagnoliOnce.Do(castagnoliInit)
return castagnoliTable
}
return makeTable(poly)
}
// makeTable returns the Table constructed from the specified polynomial.
func makeTable(poly uint32) *Table {
t := new(Table)
for i := 0; i < 256; i++ {
crc := uint32(i)
for j := 0; j < 8; j++ {
if crc&1 == 1 {
crc = (crc >> 1) ^ poly
} else {
crc >>= 1
}
}
t[i] = crc
}
return t
}
// makeTable8 returns slicing8Table constructed from the specified polynomial.
func makeTable8(poly uint32) *slicing8Table {
t := new(slicing8Table)
t[0] = *makeTable(poly)
for i := 0; i < 256; i++ {
crc := t[0][i]
for j := 1; j < 8; j++ {
crc = t[0][crc&0xFF] ^ (crc >> 8)
t[j][i] = crc
}
}
return t
}
// digest represents the partial evaluation of a checksum.
type digest struct {
crc uint32
tab *Table
}
// New creates a new hash.Hash32 computing the CRC-32 checksum
// using the polynomial represented by the Table.
func New(tab *Table) hash.Hash32 { return &digest{0, tab} }
// NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum
// using the IEEE polynomial.
func NewIEEE() hash.Hash32 { return New(IEEETable) }
func (d *digest) Size() int { return Size }
func (d *digest) BlockSize() int { return 1 }
func (d *digest) Reset() { d.crc = 0 }
func update(crc uint32, tab *Table, p []byte) uint32 {
crc = ^crc
for _, v := range p {
crc = tab[byte(crc)^v] ^ (crc >> 8)
}
return ^crc
}
// updateSlicingBy8 updates CRC using Slicing-by-8
func updateSlicingBy8(crc uint32, tab *slicing8Table, p []byte) uint32 {
crc = ^crc
for len(p) > 8 {
crc ^= uint32(p[0]) | uint32(p[1])<<8 | uint32(p[2])<<16 | uint32(p[3])<<24
crc = tab[0][p[7]] ^ tab[1][p[6]] ^ tab[2][p[5]] ^ tab[3][p[4]] ^
tab[4][crc>>24] ^ tab[5][(crc>>16)&0xFF] ^
tab[6][(crc>>8)&0xFF] ^ tab[7][crc&0xFF]
p = p[8:]
}
crc = ^crc
return update(crc, &tab[0], p)
}
// Update returns the result of adding the bytes in p to the crc.
func Update(crc uint32, tab *Table, p []byte) uint32 {
switch tab {
case castagnoliTable:
return updateCastagnoli(crc, p)
case IEEETable:
return updateIEEE(crc, p)
}
return update(crc, tab, p)
}
func (d *digest) Write(p []byte) (n int, err error) {
d.crc = Update(d.crc, d.tab, p)
return len(p), nil
}
func (d *digest) Sum32() uint32 { return d.crc }
func (d *digest) Sum(in []byte) []byte {
s := d.Sum32()
return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
}
// Checksum returns the CRC-32 checksum of data
// using the polynomial represented by the Table.
func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
// ChecksumIEEE returns the CRC-32 checksum of data
// using the IEEE polynomial.
func ChecksumIEEE(data []byte) uint32 { return updateIEEE(0, data) }