-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtxinput.go
254 lines (219 loc) · 7.13 KB
/
txinput.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
package bt
import (
"bytes"
"context"
"encoding/binary"
"encoding/hex"
"fmt"
"github.com/libsv/go-bk/crypto"
"github.com/pkg/errors"
"github.com/libsv/go-bt/v2/bscript"
"github.com/libsv/go-bt/v2/sighash"
)
// UTXOGetterFunc is used for tx.Fund(...). It provides the amount of satoshis required
// for funding as `deficit`, and expects []*bt.UTXO to be returned containing
// utxos of which *bt.Input's can be built.
// If the returned []*bt.UTXO does not cover the deficit after fee recalculation, then
// this UTXOGetterFunc is called again, with the newly calculated deficit passed in.
//
// It is expected that bt.ErrNoUTXO will be returned once the utxo source is depleted.
type UTXOGetterFunc func(ctx context.Context, deficit uint64) ([]*UTXO, error)
// TotalInputSatoshis returns the total Satoshis inputted to the transaction.
func (tx *Tx) TotalInputSatoshis() (total uint64) {
for _, in := range tx.Inputs {
total += in.PreviousTxSatoshis
}
return
}
func (tx *Tx) addInput(input *Input) {
tx.Inputs = append(tx.Inputs, input)
}
// AddP2PKHInputsFromTx will add all Outputs of given previous transaction
// that match a specific public key to your transaction.
func (tx *Tx) AddP2PKHInputsFromTx(pvsTx *Tx, matchPK []byte) error {
// Given that the prevTxID never changes, calculate it once up front.
prevTxIDBytes := pvsTx.TxIDBytes()
for i, utxo := range pvsTx.Outputs {
utxoPkHASH160, err := utxo.LockingScript.PublicKeyHash()
if err != nil {
return err
}
if bytes.Equal(utxoPkHASH160, crypto.Hash160(matchPK)) {
if err := tx.FromUTXOs(&UTXO{
TxID: prevTxIDBytes,
Vout: uint32(i),
Satoshis: utxo.Satoshis,
LockingScript: utxo.LockingScript,
}); err != nil {
return err
}
}
}
return nil
}
// From adds a new input to the transaction from the specified UTXO fields, using the default
// finalised sequence number (0xFFFFFFFF). If you want a different nSeq, change it manually
// afterwards.
func (tx *Tx) From(prevTxID string, vout uint32, prevTxLockingScript string, satoshis uint64) error {
pts, err := bscript.NewFromHexString(prevTxLockingScript)
if err != nil {
return err
}
pti, err := hex.DecodeString(prevTxID)
if err != nil {
return err
}
return tx.FromUTXOs(&UTXO{
TxID: pti,
Vout: vout,
LockingScript: pts,
Satoshis: satoshis,
})
}
// FromUTXOs adds a new input to the transaction from the specified *bt.UTXO fields, using the default
// finalised sequence number (0xFFFFFFFF). If you want a different nSeq, change it manually
// afterwards.
func (tx *Tx) FromUTXOs(utxos ...*UTXO) error {
for _, utxo := range utxos {
i := &Input{
PreviousTxOutIndex: utxo.Vout,
PreviousTxSatoshis: utxo.Satoshis,
PreviousTxScript: utxo.LockingScript,
SequenceNumber: DefaultSequenceNumber, // use default finalised sequence number
}
if err := i.PreviousTxIDAdd(utxo.TxID); err != nil {
return err
}
tx.addInput(i)
}
return nil
}
// Fund continuously calls the provided bt.UTXOGetterFunc, adding each returned input
// as an input via tx.From(...), until it is estimated that inputs cover the outputs + fees.
//
// After completion, the receiver is ready for `Change(...)` to be called, and then be signed.
// Note, this function works under the assumption that receiver *bt.Tx already has all the outputs
// which need covered.
//
// If insufficient utxos are provided from the UTXOGetterFunc, a bt.ErrInsufficientFunds is returned.
//
// Example usage:
//
// if err := tx.Fund(ctx, bt.NewFeeQuote(), func(ctx context.Context, deficit satoshis) ([]*bt.UTXO, error) {
// utxos := make([]*bt.UTXO, 0)
// for _, f := range funds {
// deficit -= satoshis
// utxos := append(utxos, &bt.UTXO{
// TxID: f.TxID,
// Vout: f.Vout,
// LockingScript: f.Script,
// Satoshis: f.Satoshis,
// })
// if deficit == 0 {
// return utxos, nil
// }
// }
// return nil, bt.ErrNoUTXO
// }); err != nil {
// if errors.Is(err, bt.ErrInsufficientFunds) { /* handle */ }
// return err
// }
func (tx *Tx) Fund(ctx context.Context, fq *FeeQuote, next UTXOGetterFunc) error {
deficit, err := tx.estimateDeficit(fq)
if err != nil {
return err
}
for deficit != 0 {
utxos, err := next(ctx, deficit)
if err != nil {
if errors.Is(err, ErrNoUTXO) {
break
}
return err
}
if err = tx.FromUTXOs(utxos...); err != nil {
return err
}
deficit, err = tx.estimateDeficit(fq)
if err != nil {
return err
}
}
if deficit != 0 {
return ErrInsufficientFunds
}
return nil
}
// InputCount returns the number of transaction Inputs.
func (tx *Tx) InputCount() int {
return len(tx.Inputs)
}
// PreviousOutHash returns a byte slice of inputs outpoints, for creating a signature hash
func (tx *Tx) PreviousOutHash() []byte {
buf := make([]byte, 0)
for _, in := range tx.Inputs {
buf = append(buf, ReverseBytes(in.PreviousTxID())...)
oi := make([]byte, 4)
binary.LittleEndian.PutUint32(oi, in.PreviousTxOutIndex)
buf = append(buf, oi...)
}
return crypto.Sha256d(buf)
}
// SequenceHash returns a byte slice of inputs SequenceNumber, for creating a signature hash
func (tx *Tx) SequenceHash() []byte {
buf := make([]byte, 0)
for _, in := range tx.Inputs {
oi := make([]byte, 4)
binary.LittleEndian.PutUint32(oi, in.SequenceNumber)
buf = append(buf, oi...)
}
return crypto.Sha256d(buf)
}
// InsertInputUnlockingScript applies a script to the transaction at a specific index in
// unlocking script field.
func (tx *Tx) InsertInputUnlockingScript(index uint32, s *bscript.Script) error {
if tx.Inputs[index] != nil {
tx.Inputs[index].UnlockingScript = s
return nil
}
return fmt.Errorf("no input at index %d", index)
}
// FillInput is used to unlock the transaction at a specific input index.
// It takes an Unlocker interface as a parameter so that different
// unlocking implementations can be used to unlock the transaction -
// for example local or external unlocking (hardware wallet), or
// signature / non-signature based.
func (tx *Tx) FillInput(ctx context.Context, unlocker Unlocker, params UnlockerParams) error {
if unlocker == nil {
return ErrNoUnlocker
}
if params.SigHashFlags == 0 {
params.SigHashFlags = sighash.AllForkID
}
unlockingScript, err := unlocker.UnlockingScript(ctx, tx, params)
if err != nil {
return err
}
return tx.InsertInputUnlockingScript(params.InputIdx, unlockingScript)
}
// FillAllInputs is used to sign all inputs. It takes an UnlockerGetter interface
// as a parameter so that different unlocking implementations can
// be used to sign the transaction - for example local/external
// signing, or P2PKH/contract signing.
//
// Given this signs inputs and outputs, sighash `ALL|FORKID` is used.
func (tx *Tx) FillAllInputs(ctx context.Context, ug UnlockerGetter) error {
for i, in := range tx.Inputs {
u, err := ug.Unlocker(ctx, in.PreviousTxScript)
if err != nil {
return err
}
if err = tx.FillInput(ctx, u, UnlockerParams{
InputIdx: uint32(i),
SigHashFlags: sighash.AllForkID, // use SIGHASHALLFORFORKID to sign automatically
}); err != nil {
return err
}
}
return nil
}