-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
159 lines (128 loc) · 5.23 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import namedtuple
import numpy as np
import os
import tensorflow as tf
from tensorflow.models.rnn import rnn
Config = namedtuple('Config',
['batch_size', 'num_steps', 'hidden_size', 'embedding_dim',
'dropout_keep_prob', 'charset_size', 'num_layers', 'max_grad_norm'])
class CharRNN(object):
def __init__(self, stage, config):
self._batch_size = config.batch_size if not stage == 'infer' else 1
self._num_steps = config.num_steps if not stage == 'infer' else 1
self._hidden_size = config.hidden_size
self._embedding_dim = config.embedding_dim
self._dropout_keep_prob = config.dropout_keep_prob
self._num_layers = config.num_layers
self._charset_size = config.charset_size
self._stage = stage
self._input_data = tf.placeholder(tf.int32, [self._batch_size,
self._num_steps])
self._targets = tf.placeholder(tf.int32, [self._batch_size,
self._num_steps])
lstm_cell_input = tf.nn.rnn_cell.LSTMCell(self._hidden_size,
self._embedding_dim)
lstm_cell = tf.nn.rnn_cell.LSTMCell(self._hidden_size,
self._hidden_size)
if stage == 'train' and self._dropout_keep_prob < 1:
lstm_cell_input = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell_input, output_keep_prob=self._dropout_keep_prob)
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell, output_keep_prob=self._dropout_keep_prob)
self._cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell_input] +
[lstm_cell] * self._num_layers)
self._initial_state = self._cell.zero_state(self._batch_size, tf.float32)
with tf.device('/cpu:0'):
self._embedding = tf.get_variable('embedding', [self._charset_size,
self._embedding_dim])
inputs = tf.nn.embedding_lookup(self._embedding, self._input_data)
inputs = [tf.squeeze(input_, [1])
for input_ in tf.split(1, self._num_steps, inputs)]
outputs, state = rnn.rnn(self._cell, inputs,
initial_state=self._initial_state)
output = tf.reshape(tf.concat(1, outputs), [-1, self._hidden_size])
self._output_shape = tf.shape(output)
self._softmax_w = tf.get_variable('softmax_w',
[self._hidden_size, self._charset_size])
self._softmax_b = tf.get_variable('softmax_b', [self._charset_size])
self._logits = tf.matmul(output, self._softmax_w) + self._softmax_b
self._probability = tf.nn.softmax(self._logits)
loss = tf.nn.seq2seq.sequence_loss_by_example(
[self._logits],
[tf.reshape(self._targets, [-1])],
[tf.ones([self._batch_size * self._num_steps])], self._charset_size)
self._cost = cost = tf.reduce_sum(loss) / self._batch_size
self._final_state = state
pred = tf.argmax(self._logits, 1)
labels = tf.cast(tf.reshape(self._targets, [-1]), tf.int64)
self._misclass = 1 - tf.reduce_mean(tf.cast(tf.equal(pred, labels),
tf.float32))
if stage != 'train':
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self.lr)
self._train_op = optimizer.apply_gradients(zip(grads, tvars))
def sample(self, sess, char_to_id, num_steps, seed):
state = self._cell.zero_state(1, tf.float32).eval()
id_to_char = {v:k for k, v in char_to_id.iteritems()}
res = seed
def weighted_pick(weights):
t = np.cumsum(weights)
s = np.sum(weights)
return(int(np.searchsorted(t, np.random.rand(1)*s)))
for char in seed[:-1]:
x = np.zeros([1,1])
x[0, 0] = char_to_id[char]
feed = {self.input_data: x, self.initial_state: state}
[state] = sess.run([self.final_state], feed)
char = seed[-1]
for _ in xrange(num_steps):
x = np.zeros((1, 1))
x[0, 0] = char_to_id[char]
feed = {self.input_data: x, self.initial_state:state}
[prob, state] = sess.run([self._probability, self.final_state], feed)
output = id_to_char[weighted_pick(prob)]
res += output
char = output
return res
def assign_lr(self, session, lr_value):
session.run(tf.assign(self.lr, lr_value))
@property
def input_data(self):
return self._input_data
@property
def targets(self):
return self._targets
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def stage(self):
return self._stage
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
@property
def num_steps(self):
return self._num_steps
@property
def batch_size(self):
return self._batch_size
@property
def misclass(self):
return self._misclass