-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_S3DIS.py
229 lines (176 loc) · 9.23 KB
/
main_S3DIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import warnings
from helper_tool import ConfigS3DIS as cfg
from RandLANet import Network, compute_loss, compute_acc, IoUCalculator
from s3dis_dataset import S3DIS, S3DISSampler
import numpy as np
import os, argparse
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from datetime import datetime
import time
torch.backends.cudnn.enabled = False # 禁止cudnn加速,不加上反向传播会报错(数据矩阵太大了,如果用一个GPU的话)
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint path [default: None]')
parser.add_argument('--log_dir', default='train_output', help='Dump dir to save model checkpoint [default: log]')
parser.add_argument('--max_epoch', type=int, default=100, help='Epoch to run [default: 100]') # 50够了
parser.add_argument('--gpu', type=int, default=0, help='which gpu do you want to use [default: 2], -1 for cpu')
parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test (others use to train), option: 1-6 [default: 6]')
FLAGS = parser.parse_args()
################################################# log #################################################
LOG_DIR = FLAGS.log_dir
LOG_DIR = os.path.join(LOG_DIR, time.strftime('%Y-%m-%d_%H-%M-%S', time.gmtime())) # 返回的是英国时间
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR) # 创建多级目录
log_file_name = f'log_train_Area_{FLAGS.test_area:d}.txt'
LOG_FOUT = open(os.path.join(LOG_DIR, log_file_name), 'a') # 追加写入模式
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
################################################# dataset #################################################
# Create Dataset and Dataloader
dataset = S3DIS(FLAGS.test_area)
training_dataset = S3DISSampler(dataset, 'training')
validation_dataset = S3DISSampler(dataset, 'validation')
training_dataloader= DataLoader(training_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=training_dataset.collate_fn)
validation_dataloader = DataLoader(validation_dataset, batch_size=cfg.val_batch_size, shuffle=True, collate_fn=validation_dataset.collate_fn)
print(len(training_dataloader), len(validation_dataloader))
################################################# network #################################################
if FLAGS.gpu >= 0:
if torch.cuda.is_available():
FLAGS.gpu = torch.device(f'cuda:{FLAGS.gpu:d}')
else:
warnings.warn('CUDA is not available on your machine. Running the algorithm on CPU.')
FLAGS.gpu = torch.device('cpu')
else:
FLAGS.gpu = torch.device('cpu')
device = FLAGS.gpu
net = Network(cfg)
net.to(device)
# Load the Adam optimizer
optimizer = optim.Adam(net.parameters(), lr=cfg.learning_rate)
# Load checkpoint if there is any
it = -1 # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
start_epoch = 0
CHECKPOINT_PATH = FLAGS.checkpoint_path
if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH):
checkpoint = torch.load(CHECKPOINT_PATH)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
log_string("-> loaded checkpoint %s (epoch: %d)"%(CHECKPOINT_PATH, start_epoch))
################################################# training functions ###########################################
def adjust_learning_rate(optimizer, epoch):
lr = optimizer.param_groups[0]['lr'] # param_groups 是一个长度为1的列表(可能有时不为一),列表里面是字典,字典中有该优化器相关的参数
lr = lr * cfg.lr_decays[epoch] # cfg.lr_decays一个有500个键值对的字典,每个键对应的值都是0.95,也就是每个epoch学习率衰减0.95
for param_group in optimizer.param_groups:
param_group['lr'] = lr # 赋值新的学习率
def train_one_epoch():
stat_dict = {} # collect statistics
adjust_learning_rate(optimizer, EPOCH_CNT)
net.train() # set model to training mode
iou_calc = IoUCalculator(cfg) # 初始化IOU计算器
for batch_idx, batch_data in enumerate(training_dataloader):
t_start = time.time()
for key in batch_data:
if type(batch_data[key]) is list:
for i in range(len(batch_data[key])):
batch_data[key][i] = batch_data[key][i].to(device)
else:
batch_data[key] = batch_data[key].to(device)
# Forward pass
optimizer.zero_grad()
end_points = net(batch_data)
loss, end_points = compute_loss(end_points, cfg, device)
loss.backward()
optimizer.step()
acc, end_points = compute_acc(end_points)
iou_calc.add_data(end_points) # 保存训练结果,用于计算iou
# Accumulate statistics and print out # 累计损失和准确率
for key in end_points:
if 'loss' in key or 'acc' in key or 'iou' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
batch_interval = 50 # 本来是10
if (batch_idx + 1) % batch_interval == 0:
t_end = time.time()
# log_string(' ---- batch: %03d ----' % (batch_idx + 1))
# # TRAIN_VISUALIZER.log_scalars({key:stat_dict[key]/batch_interval for key in stat_dict},
# # (EPOCH_CNT*len(TRAIN_DATALOADER)+batch_idx)*BATCH_SIZE)
# for key in sorted(stat_dict.keys()):
# log_string('mean %s: %f' % (key, stat_dict[key] / batch_interval))
# stat_dict[key] = 0
log_string('Step %03d Loss %.3f Acc %.2f lr %.5f --- %.2f ms/batch' % (batch_idx + 1, stat_dict['loss'] / batch_interval, stat_dict['acc'] / batch_interval, optimizer.param_groups[0]['lr'], 1000 * (t_end - t_start)))
stat_dict['loss'], stat_dict['acc'] = 0, 0
mean_iou, iou_list = iou_calc.compute_iou()
log_string('mean IoU:{:.1f}'.format(mean_iou * 100))
s = 'IoU:'
for iou_tmp in iou_list:
s += '{:5.2f} '.format(100 * iou_tmp)
log_string(s)
def evaluate_one_epoch():
stat_dict = {} # collect statistics
net.eval() # set model to eval mode (for bn and dp)
iou_calc = IoUCalculator(cfg)
for batch_idx, batch_data in enumerate(validation_dataloader):
for key in batch_data:
if type(batch_data[key]) is list:
for i in range(len(batch_data[key])):
batch_data[key][i] = batch_data[key][i].to(device)
else:
batch_data[key] = batch_data[key].to(device)
# Forward pass
with torch.no_grad():
end_points = net(batch_data)
loss, end_points = compute_loss(end_points, cfg, device)
acc, end_points = compute_acc(end_points)
iou_calc.add_data(end_points)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'iou' in key: # 没有iou一项,iou在下面计算
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
for key in sorted(stat_dict.keys()):
log_string('eval mean %s: %f'%(key, stat_dict[key]/(float(batch_idx+1))))
mean_iou, iou_list = iou_calc.compute_iou()
log_string('mean IoU:{:.1f}%'.format(mean_iou * 100))
log_string('--------------------------------------------------------------------------------------')
s = f'{mean_iou*100:.1f} | '
for iou_tmp in iou_list:
s += '{:5.2f} '.format(100 * iou_tmp)
log_string(s)
log_string('--------------------------------------------------------------------------------------')
return mean_iou
def train(start_epoch):
global EPOCH_CNT
loss = 0
now_miou = 0
max_miou = 0
for epoch in range(start_epoch, FLAGS.max_epoch):
EPOCH_CNT = epoch
log_string('**** EPOCH %03d ****' % (epoch))
log_string(str(datetime.now()))
np.random.seed()
train_one_epoch()
#if EPOCH_CNT == 0 or EPOCH_CNT % 10 == 9: # Eval every 10 epochs
log_string('**** EVAL EPOCH %03d START****' % (epoch))
now_miou = evaluate_one_epoch()
# Save checkpoint
if(now_miou>max_miou): # 保存最好的iou的模型
save_dict = {'epoch': epoch+1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = net.module.state_dict()
except:
save_dict['model_state_dict'] = net.state_dict()
torch.save(save_dict, os.path.join(LOG_DIR, 'checkpoint.tar'))
max_miou = now_miou
log_string('Best mIoU = {:2.2f}%'.format(max_miou*100))
log_string('**** EVAL EPOCH %03d END****' % (epoch))
log_string('')
if __name__ == '__main__':
train(start_epoch)