-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpattern2profile.py
118 lines (106 loc) · 4.17 KB
/
pattern2profile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python
'''Convert 2D diffraction patterns to 1D angular profiles.
Usage:
pattern2profile.py <pattern_file>... [options]
Options:
-h --help Show this screen.
--output-dir=output_dir Output directory [default: output].
--apply-mask=apple_mask Whether to apply mask [default: False].
--mask=mask_file Mask file in npy format [default: None].
'''
import numpy as np
import glob
import h5py
from mpi4py import MPI
from docopt import docopt
from tqdm import tqdm
def pattern2profile(pattern, mask, binsize=1., log=True, ignore_negative=True):
pattern = pattern.copy()
assert pattern.shape[0] == pattern.shape[1] # must be a square shape
if ignore_negative:
pattern[pattern < 0] = 0.
center = pattern.shape[0] // 2
pattern *= mask
y, x = np.indices((pattern.shape))
theta = np.rad2deg(np.arctan2(y-center, x-center))
bin_theta = theta.copy()
bin_theta[bin_theta<0.] += 180.
bin_theta = bin_theta / binsize
bin_theta = np.round(bin_theta).astype(int)
angular_sum = np.bincount(bin_theta.ravel(), pattern.ravel()) # summation of each ring
ntheta = np.bincount(bin_theta.ravel(), mask.ravel())
angular_mean = angular_sum / ntheta
angular_mean[np.isinf(angular_mean)] = 0.
angular_mean[np.isnan(angular_mean)] = 0.
angular_mean /= angular_mean.mean()
if log:
angular_mean = np.log(angular_mean + 1.)
return angular_mean
def make_mask(mask_size=401, inner_radii=75, outer_radii=150, det_mask=None):
annulus = np.ones((mask_size, mask_size))
y,x = np.indices((annulus.shape))
center = mask_size // 2
r = np.sqrt((x - center)**2. + (y - center)**2.)
annulus = annulus * (r > inner_radii) * (r < outer_radii)
if det_mask is None:
det_mask = np.ones((mask_size, mask_size))
else:
assert det_mask.shape == annulus.shape
return annulus * det_mask
if __name__ == '__main__':
# parse command options
argv = docopt(__doc__)
pattern_files = argv['<pattern_file>']
output_dir = argv['--output-dir']
apply_mask = argv['--apply-mask']
mask_file = argv['--mask']
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
if rank == 0:
print('Pattern files: %s' % str(pattern_files))
print('Total pattern files: %d' % len(pattern_files))
job_size = len(pattern_files) // size
jobs = []
for i in range(size):
if i == (size - 1):
job = pattern_files[i*job_size:]
else:
job = pattern_files[i*job_size:(i+1)*job_size]
jobs.append(job)
if i == 0:
continue
else:
comm.send(job, dest=i)
print('Rank 0 send job to rank %d: %s' % (i, str(job)))
job = jobs[0]
else:
job = comm.recv(source=0)
print('Rank %d receive job: %s' % (rank, str(job)))
comm.barrier()
# Convert to profiles
if apply_mask == 'True':
det_mask = np.load(mask_file)
mask = make_mask(det_mask=det_mask)
else:
mask = make_mask(det_mask=None)
count = 0
output = h5py.File('%s/profile_%d.h5' % (output_dir, rank))
for i in range(len(job)):
print('===========Rank %d processing %d/%d: %s=============' % (rank, i, len(job)-1, job[i]))
data = h5py.File(job[i], 'r')
nb_patterns = data['pattern'].shape[0]
for j in tqdm(range(nb_patterns)):
pattern = data['pattern'][j]
euler_angle = data['euler_angle'][j]
profile = pattern2profile(pattern, mask, binsize=1.8)
if count == 0:
output.create_dataset("profile", data=profile.reshape((1, 101)), maxshape=(None, 101))
output.create_dataset("euler_angle", data=euler_angle.reshape((1, 3)), maxshape=(None, 3))
else:
output['profile'].resize(count+1, axis=0)
output['euler_angle'].resize(count+1, axis=0)
output['profile'][count] = profile
output['euler_angle'][count] = euler_angle
count += 1
output.close()