-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImprovedDBSCAN.py
241 lines (217 loc) · 7.86 KB
/
ImprovedDBSCAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import LCS
import time
import copy
import DataPretreatment
import math
import pickle
import operator
final_result = None
UNCLASSIFIED = False
NOISE = 0
data_tmp = None
def dist(a, b):
"""
输入:向量A, 向量B
输出:两个向量的欧式距离
"""
a_new = copy.deepcopy(a)
b_new = copy.deepcopy(b)
if operator.eq(a_new,b_new) == True:
return 0
return LCS.get_lcs_distance(a_new,b_new)
def eps_neighbor(a, b, eps):
"""
输入:向量A, 向量B
输出:是否在eps范围内
"""
return dist(a, b) < eps
def region_query(data, pointId, eps):
"""
输入:数据集, 查询点id, 半径大小
输出:在eps范围内的点的id
"""
nPoints = data.shape[1]
seeds = []
for i in range(nPoints):
if eps_neighbor(data_tmp[pointId], data_tmp[i], eps):
seeds.append(i)
return seeds
def expand_cluster(data, clusterResult, pointId, clusterId, eps, minPts):
"""
输入:数据集, 分类结果, 待分类点id, 簇id, 半径大小, 最小点个数
输出:能否成功分类
"""
seeds = region_query(data, pointId, eps)
if len(seeds) < minPts: # 不满足minPts条件的为噪声点
clusterResult[pointId] = NOISE
return False
else:
clusterResult[pointId] = clusterId # 划分到该簇
for seedId in seeds:
clusterResult[seedId] = clusterId
while len(seeds) > 0: # 持续扩张
currentPoint = seeds[0]
queryResults = region_query(data, currentPoint, eps)
if len(queryResults) >= minPts:
for i in range(len(queryResults)):
resultPoint = queryResults[i]
if clusterResult[resultPoint] == UNCLASSIFIED:
seeds.append(resultPoint)
clusterResult[resultPoint] = clusterId
elif clusterResult[resultPoint] == NOISE:
clusterResult[resultPoint] = clusterId
seeds = seeds[1:]
return True
def dbscan(data, eps):
"""
输入:数据集, 半径大小, 最小点个数
输出:分类簇id
"""
global data_tmp
clusterId = 1
nPoints = len(data)
clusterResult = [UNCLASSIFIED] * nPoints
MinPtsCandidate = []
for i in range(len(data)):
MinPtsCandidate.append(data[i].pop())
# print(MinPtsCandidate)
original_minpts = MinPtsCandidate[0]
data_tmp = copy.deepcopy(data)
data = np.mat(data).transpose()
for pointId in range(nPoints):
point = data[:, pointId]
if pointId == 0 :
minPts = original_minpts
else:
minPts = math.sqrt(MinPtsCandidate[pointId]/original_minpts) * minPts
# print(minPts)
if clusterResult[pointId] == UNCLASSIFIED:
if expand_cluster(data, clusterResult, pointId, clusterId, eps, minPts):
clusterId = clusterId + 1
return clusterResult, clusterId - 1
def CalculateSilhouetteCoefficient(result):
"""
计算聚类结果的轮廓系数
:param result: 聚类结果
:return: 轮廓系数
"""
S = 0
num_global = 0
if len(result) == 1:
return -1
for i in range(len(result)):
if len(result[i]) == 1:
S = S + 0
num_global = num_global + 1
else:
for j in range(len(result[i])):
a = 0
b_list = []
num_global = num_global + 1
for k in range(len(result[i])):
if j == k:
continue
a = a + LCS.get_lcs_distance(result[i][j],result[i][k])
a = a/(len(result[i])-1)
for i_tmp in range(len(result)):
if i == i_tmp:
continue
for j_tmp in range(len(result[i_tmp])):
b_list.append(LCS.get_lcs_distance(result[i][j],result[i_tmp][j_tmp]))
if len(b_list) == 0:
return 0
b = min(b_list)
if max(a,b) == 0:
break
S = S + (b - a)/max(a,b)
S = S/num_global
return S
def main():
dataSet = DataPretreatment.D1
eps = DataPretreatment.EpsCandidate
# print(dataSet)
ClusterNumberandIndexList = []
cluster_result = []
f = open('result.txt','w')
for i in range(len(eps)):
clustering, clusterNum = dbscan(dataSet[i], eps[i])
result = [[] for i in range(clusterNum + 2)]
for j in range(len(clustering)):
if clustering[j] == -1:
result[clusterNum + 1].append(dataSet[i][j])
else:
result[clustering[j]].append(dataSet[i][j])
for i_1 in range(len(result)):
for j_1 in range(len(result[i_1])):
result[i_1][j_1].pop()
while result[i_1][j_1][-1] == -1 or result[i_1][j_1][-1] == 10 or result[i_1][j_1][-1] == 13 or result[i_1][j_1][-1] == 9:
result[i_1][j_1].pop()
ClusterNumberandIndexList.append((clusterNum,eps[i]))
print('cluster number is ' + repr(ClusterNumberandIndexList[i][0]))
# print("SilhouetteCoefficient is " + repr(ClusterNumberandIndexList[i][2]))
f.write('cluster number is ' + repr(ClusterNumberandIndexList[i][0]+1))
f.write('\n')
# print('Silhouette Coefficient is ' + repr(ClusterNumberandIndexList[i][1]))
f.write("eps is " + repr(ClusterNumberandIndexList[i][1]))
# f.write('\n')
# f.write("SilhouetteCoefficient is " + repr(ClusterNumberandIndexList[i][2]))
f.write('\n')
f.write("the result of cluster is ")
f.write('\n')
for i_1 in range(len(result)):
f.write("")
f.write('the number ' + repr(i_1) + ' cluster is \n')
for j_1 in range(len(result[i_1])):
# f.write(bytes(result[i_1][j_1]))
for k_1 in range(len(result[i_1][j_1])):
f.write(chr(result[i_1][j_1][k_1]))
f.write('\n')
f.write('\n')
f.write("\n\n")
cluster_result.append(result)
f.close()
global final_result
for k in range(len(cluster_result)):
file_name = 'result' + str(k) + '.bin'
final_result= copy.deepcopy(cluster_result[k])
final_result_tmp = copy.deepcopy(final_result)
for i in range(len(final_result_tmp)):
if len(final_result_tmp[i]) == 0:
final_result.remove(final_result_tmp[i])
final_result_tmp = copy.deepcopy(final_result)
for i in range(len(final_result_tmp)):
for j in range(len(final_result_tmp[i])):
final_result[i][j] = bytes(final_result_tmp[i][j])
# print('final cluster result is ')
# for i in range(len(final_result)):
# for j in range(len(final_result[i])):
# print(final_result[i][j])
# print('')
f = open(file_name,'wb')
pickle.dump(final_result,f)
f.close()
# print(clusters)
# result = [[] for i in range(clusterNum + 2)]
# print(result)
# for i in range(len(clustering)):
# if clustering[i] == -1:
# result[clusterNum + 1].append(dataSet[5][i])
# else:
# result[clustering[i]].append(dataSet[5][i])
#
# for i in range(len(result)):
# for j in range(len(result[i])):
# result[i][j].pop()
# while result[i][j][-1] == -1 or result[i][j][-1] == 10 or result[i][j][-1] == 13 or result[i][j][-1] == 9:
# result[i][j].pop()
#
# for i in range(len(result)):
# for j in range(len(result[i])):
# print(bytes(result[i][j]))
# print("")
if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))