-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate.py
1448 lines (1218 loc) · 67.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import json
import os
import random
import re
import time
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import RandomSampler, DataLoader
from tqdm import tqdm
from transformers import BertModel, get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup
from model import BertModelStage2, BertModelStage1
from utils import read_episodes_data_from_file, convert_label_id_to_io, get_original_prototypes, convert_to_feature, \
convert_features_to_dataset, extract_entity_span_label, extract_entity_span, convert_label_to_id, \
read_conll2003_format_data_from_file, read_cross_domain_target_support_data_from_file, get_proxy_label_emb, \
GetDataLoader, set_seeds, calculate_ce_loss
def adapt_predict_stage1_episode(args, episode_data, bert_model_stage1):
############ prepare data #####################
episode_support_sentence = episode_data["support_sentences"]
episode_support_label_id = episode_data["support_labels_ids"]
# print(episode_support_sentence)
# print(episode_support_label_id)
episode_query_sentence = episode_data["query_sentences"]
episode_query_label_id = episode_data["query_labels_ids"]
episode_support_features_stage1 = []
for sentence, label_id in zip(episode_support_sentence, episode_support_label_id):
episode_support_features_stage1.append(convert_to_feature(sentence, label_id, args))
episode_support_input_ids = torch.stack(
[torch.tensor(feature.input_ids) for feature in episode_support_features_stage1])
episode_support_attention_mask = torch.stack(
[torch.tensor(feature.attention_mask) for feature in episode_support_features_stage1])
episode_support_stage1 = torch.stack(
[torch.tensor(feature.label_ids) for feature in episode_support_features_stage1])
# stage1_finetune_time_a = time.time()
########################################
optimizer_stage1 = torch.optim.Adam(bert_model_stage1.parameters(), lr=args.finetune_target_LR_stage1)
bert_model_stage1.train()
loss_min = 10000
up = 0
up_bound = 2
if args.n_way_k_shot in ['5_5', '10_5']:
up_bound = 6
for i in range(100):
optimizer_stage1.zero_grad()
loss_stage1, _1, _2 = \
bert_model_stage1(
input_ids=episode_support_input_ids.to(args.device),
attention_mask=episode_support_attention_mask.to(args.device),
label_ids=episode_support_stage1.to(args.device),
)
if loss_stage1 > loss_min:
up += 1
else:
up = 0
loss_min = loss_stage1
if up > up_bound:
break
loss_stage1.backward()
optimizer_stage1.step()
# stage1_finetune_time_b = time.time()
# print('stage1_finetune_time_b-stage1_finetune_time_a', stage1_finetune_time_b - stage1_finetune_time_a)
bert_model_stage1.eval()
span_preds = []
span_golds = []
stage1_test_time_a = time.time()
# for i in range(len(episode_query_input_ids)):
# # label_ids here is only used for identify the first token of a word,
# # so no label information is used for predicting
#
# _, logits_stage1, label_ids_stage1 = \
# bert_model_stage1(
# input_ids=torch.stack([episode_query_input_ids[i]]).to(args.device),
# attention_mask=torch.stack([episode_query_attention_mask[i]]).to(args.device),
# label_ids=torch.stack([episode_query_stage1[i]]).to(args.device),
# )
#
# preds_stage1 = torch.argmax(logits_stage1, dim=-1)
#
# span_pred = bert_model_stage1.decode_label_ids(preds_stage1.cpu().numpy().tolist())
# span_gold = bert_model_stage1.decode_label_ids(label_ids_stage1)
#
# span_preds.append(span_pred)
# span_golds.append(span_gold)
episode_query_features_stage1 = []
for sentence, label_id in zip(episode_query_sentence, episode_query_label_id):
episode_query_features_stage1.append(convert_to_feature(sentence, label_id, args))
episode_query_input_ids = torch.stack(
[torch.tensor(feature.input_ids) for feature in episode_query_features_stage1])
episode_query_attention_mask = torch.stack(
[torch.tensor(feature.attention_mask) for feature in episode_query_features_stage1])
episode_query_stage1 = torch.stack([torch.tensor(feature.label_ids) for feature in episode_query_features_stage1])
_, logits_stage1, label_ids_stage1 = \
bert_model_stage1(
input_ids=episode_query_input_ids.to(args.device),
attention_mask=episode_query_attention_mask.to(args.device),
label_ids=episode_query_stage1.to(args.device),
)
preds_stage1 = torch.argmax(logits_stage1, dim=-1)
preds_stage1 = preds_stage1.cpu().numpy().tolist()
# print(len(preds_stage1))
index_now = 0
for sentence in episode_query_sentence:
# print(sentence)
len_sen = len(sentence)
# print(len_sen)
pred_io = preds_stage1[index_now:index_now + len_sen]
gold_io = label_ids_stage1[index_now:index_now + len_sen]
# print(pred_io)
span_pred = bert_model_stage1.decode_label_ids(pred_io)
span_gold = bert_model_stage1.decode_label_ids(gold_io)
span_preds.append(span_pred)
span_golds.append(span_gold)
index_now += len_sen
stage_1_inference_time = time.time() - stage1_test_time_a
tp = 0
num_pred = 0
num_gold = 0
for span_pred, span_gold in zip(span_preds, span_golds):
for pred in span_pred:
if pred in span_gold:
tp += 1
num_pred += len(span_pred)
num_gold += len(span_gold)
if tp == 0:
precision_stage1_episode = 0
recall_stage1_episode = 0
f1_stage1_episode = 0
else:
precision_stage1_episode = tp / num_pred
recall_stage1_episode = tp / num_gold
f1_stage1_episode = 2 * precision_stage1_episode * recall_stage1_episode / (
precision_stage1_episode + recall_stage1_episode)
metric = {"f1": f1_stage1_episode,
"precision": precision_stage1_episode,
"recall": recall_stage1_episode,
"num_true": tp,
"num_pred": num_pred,
"num_gold": num_gold,
"stage_1_inference_time": stage_1_inference_time
}
return span_preds, metric
def adapt_predict_stage1_cross_domain(args, bert_model_stage1, support_sentences_sample, support_labels_ids_sample,
query_sentences, query_labels_ids):
optimizer_stage1 = torch.optim.Adam(bert_model_stage1.parameters(), lr=args.finetune_target_LR_stage1)
bert_model_stage1.train()
loss_min = 10000
up = 0
up_bound = 2
if args.k_shot == 5:
up_bound = 6
if args.adapt_stage1:
if args.dataset_target == 'I2B2' and args.k_shot == 5:
# in this setting,
# we cannot put all support data in a batch due to the GPU, so we split it
dataloader_support_stage1 = GetDataLoader(args=args,
sentences=support_sentences_sample,
labels_ids=support_labels_ids_sample,
batch_size=8,
ignore_o_sentence=False)
for i in range(args.finetune_target_epochs_stage1):
loss_batch = 0
for step, batch_stage1 in enumerate(dataloader_support_stage1):
optimizer_stage1.zero_grad()
loss_stage1, _1, _2 = \
bert_model_stage1(
input_ids=batch_stage1[0].to(args.device),
token_type_ids=batch_stage1[1].to(args.device),
attention_mask=batch_stage1[2].to(args.device),
label_ids=batch_stage1[3].to(args.device),
)
loss_batch += loss_stage1.item()
loss_stage1.backward()
optimizer_stage1.step()
if loss_batch > loss_min:
up += 1
else:
up = 0
loss_min = loss_batch
if up > up_bound:
break
else:
support_stage1_features = []
for sentence, label_stage1 in zip(support_sentences_sample, support_labels_ids_sample):
support_stage1_features.append(convert_to_feature(sentence, label_stage1, args))
support_data_stage1_feature = {
"input_ids": torch.stack([torch.tensor(feature.input_ids) for feature in support_stage1_features]).to(
args.device),
"token_type_ids": torch.stack(
[torch.tensor(feature.token_type_ids) for feature in support_stage1_features]).to(
args.device),
"attention_mask": torch.stack(
[torch.tensor(feature.attention_mask) for feature in support_stage1_features]).to(
args.device),
"label_ids": torch.stack([torch.tensor(feature.label_ids) for feature in support_stage1_features]).to(
args.device),
}
for i in range(args.finetune_target_epochs_stage1):
optimizer_stage1.zero_grad()
loss_stage1, _1, _2 = \
bert_model_stage1(
input_ids=support_data_stage1_feature["input_ids"],
attention_mask=support_data_stage1_feature["attention_mask"],
label_ids=support_data_stage1_feature["label_ids"],
)
loss_stage1.backward()
optimizer_stage1.step()
if loss_stage1 > loss_min:
up += 1
else:
up = 0
loss_min = loss_stage1
if up > up_bound:
break
else:
pass
span_preds = []
span_golds = []
for i in range(len(query_sentences)):
query_sentence = query_sentences[i]
query_label_ids = query_labels_ids[i]
feature_stage1 = convert_to_feature(query_sentence, query_label_ids, args)
# label_ids here is only used for identify the first token of a word,
# so no label information is used for predicting
_, logits_stage1, label_ids_stage1_stage1 = \
bert_model_stage1(
input_ids=torch.tensor([feature_stage1.input_ids]).to(args.device),
attention_mask=torch.tensor([feature_stage1.attention_mask]).to(args.device),
label_ids=torch.tensor([feature_stage1.label_ids]).to(args.device),
)
preds_stage1 = torch.argmax(logits_stage1, dim=-1)
span_pred = bert_model_stage1.decode_label_ids(preds_stage1.cpu().numpy().tolist())
span_gold = bert_model_stage1.decode_label_ids(label_ids_stage1_stage1)
span_preds.append(span_pred)
span_golds.append(span_gold)
tp = 0
num_pred = 0
num_gold = 0
for span_pred, span_gold in zip(span_preds, span_golds):
for pred in span_pred:
if pred in span_gold:
tp += 1
num_pred += len(span_pred)
num_gold += len(span_gold)
if tp == 0:
precision_stage1 = 0
recall_stage1 = 0
f1_stage1 = 0
else:
precision_stage1 = tp / num_pred
recall_stage1 = tp / num_gold
f1_stage1 = 2 * precision_stage1 * recall_stage1 / (
precision_stage1 + recall_stage1)
metric = {"f1": f1_stage1,
"precision": precision_stage1,
"recall": recall_stage1,
"num_true": tp,
"num_pred": num_pred,
"num_gold": num_gold,
}
return span_preds, metric
#
# def adapt_stage2_no_type_name(args, ModelStage2, sentences_support, labels_ids_support, label_types_id, label_dict):
# ModelStage2.linear_layer = nn.Linear(args.pretrained_model_hidden_size, len(label_types_id)).to(args.device)
#
# sentences_support_filtered = []
# labels_ids_support_filtered = []
# for sentence, label_ids in zip(sentences_support, labels_ids_support):
# if sum(label_ids) > 0:
# sentences_support_filtered.append(sentence)
# new_label_ids = []
# for id in label_ids:
# if id == 0:
# new_label_ids.append(id)
# else:
# # Here we add 1 for entity-token because we will minus 1 in the model
# new_label_ids.append(label_dict[id] + 1)
# labels_ids_support_filtered.append(new_label_ids)
#
# dataloader_support_io = GetDataLoader(args=args,
# sentences=sentences_support_filtered,
# labels_ids=labels_ids_support_filtered,
# batch_size=32,
# ignore_o_sentence=False)
#
# optimizer = torch.optim.Adam(ModelStage2.parameters(), lr=args.train_source_LR_stage2)
#
# ModelStage2.train()
# flag = 0
# loss_before = 1000
# for i in range(args.finetune_target_epochs_stage2):
# loss_batch = 0
# for step, batch in enumerate(dataloader_support_io):
# optimizer.zero_grad()
# loss = \
# ModelStage2(
# input_ids=batch[0].to(args.device),
# token_type_ids=batch[1].to(args.device),
# attention_mask=batch[2].to(args.device),
# label_ids=batch[3].to(args.device),
# finetune=True,
# )
# loss_batch += loss.item()
# loss.backward()
# optimizer.step()
#
# avg_loss = loss_batch / len(sentences_support_filtered)
# print('### Current avg_loss loss: ', avg_loss, ' ###')
# if avg_loss > loss_before:
# flag += 1
# else:
# flag = 0
# loss_before = avg_loss
# if flag > 0:
# print('### Stop here: ', i, ' index batch ###')
# break
# # if avg_loss < args.finetune_target_threshold_stage2:
# # print('### Stop here: ', i, ' index batch ###')
# # print('### Current avg loss: ', avg_loss, ' ###')
# # break
# return ModelStage2
#
def adapt_stage2(args, ModelStage2, sentences_support, labels_ids_support, label_types_id,
label_dict):
# get the emb of type names and put it into the linear layer
all_label_emb = get_proxy_label_emb(args, ModelStage2, label_types_id)
ModelStage2.linear_layer = nn.Linear(args.pretrained_model_hidden_size, len(label_types_id)).to(args.device)
ModelStage2.linear_layer.weight = nn.Parameter(all_label_emb.to(args.device))
sentences_support_filtered = []
labels_ids_support_filtered = []
for sentence, label_ids in zip(sentences_support, labels_ids_support):
if sum(label_ids) > 0:
sentences_support_filtered.append(sentence)
new_label_ids = []
for id in label_ids:
if id == 0:
new_label_ids.append(id)
else:
# Here we add 1 for entity-token because we will minus 1 in the model
new_label_ids.append(label_dict[id] + 1)
labels_ids_support_filtered.append(new_label_ids)
# we only optimize the BERT of type classification
optimizer = torch.optim.Adam(ModelStage2.encoder.parameters(), lr=args.train_source_LR_stage2)
if args.dataset_target == 'I2B2':
# in this setting,
# we cannot put all support data in a batch due to the GPU, so we split it
dataloader_support_io = GetDataLoader(args=args,
sentences=sentences_support_filtered,
labels_ids=labels_ids_support_filtered,
batch_size=32,
ignore_o_sentence=False)
ModelStage2.train()
flag = 0
loss_before = 1000
bert_stage2 = ModelStage2.encoder
for i in range(args.finetune_target_epochs_stage2):
loss_batch = 0
for step, batch in enumerate(dataloader_support_io):
optimizer.zero_grad()
bert_encoder_outputs = \
bert_stage2(
input_ids=batch[0].to(args.device),
attention_mask=batch[2].to(args.device),
output_hidden_states=True
)
bert_encoder_output = (torch.sum(torch.stack(bert_encoder_outputs.hidden_states[-4:]), 0) / 4).squeeze(
1)
bert_output_raw_flatten = torch.flatten(bert_encoder_output, start_dim=0, end_dim=1)[:]
labels_flatten = torch.flatten(batch[3].to(args.device), start_dim=0, end_dim=1)[:]
filtered_indices_0 = torch.where(labels_flatten > 0)[0].cpu().numpy().tolist()
entity_bert_output = bert_output_raw_flatten[filtered_indices_0]
entity_label_ids = labels_flatten[filtered_indices_0] - 1
all_label_emb = ModelStage2.linear_layer.weight
logits = torch.matmul(entity_bert_output, all_label_emb.T)
loss = calculate_ce_loss(logits=logits,
label_ids=entity_label_ids,
weight=None)
avg_loss = loss / len(batch[0])
if avg_loss < args.finetune_target_threshold_stage2:
print('### Stop here: ', step, ' index step ###')
print('### Current avg loss: ', avg_loss, ' ###')
flag += 1
break
loss_batch += loss.item()
loss.backward()
optimizer.step()
if flag > 0:
print('### Stop here: ', i, ' index batch ###')
break
# avg_loss = loss_batch / len(sentences_support_filtered)
# print('### Current avg_loss loss: ', avg_loss, ' ###')
# if avg_loss > loss_before:
# flag += 1
# else:
# flag = 0
# loss_before = avg_loss
# if flag > 0:
# print('### Stop here: ', i, ' index batch ###')
# break
# if avg_loss < args.finetune_target_threshold_stage2:
# print('### Stop here: ', i, ' index batch ###')
# print('### Current avg loss: ', avg_loss, ' ###')
# break
else:
features = []
for sentence, label_ids in zip(sentences_support_filtered, labels_ids_support_filtered):
features.append(convert_to_feature(sentence, label_ids, args))
episode_support_input_ids = torch.stack([torch.tensor(feature.input_ids) for feature in features]).to(
args.device)
episode_support_attention_mask = torch.stack([torch.tensor(feature.attention_mask) for feature in features]).to(
args.device)
episode_support_label_ids = torch.stack([torch.tensor(feature.label_ids) for feature in features]).to(
args.device)
ModelStage2.train()
flag = 0
loss_before = 1000
bert_stage2 = ModelStage2.encoder
for i in range(args.finetune_target_epochs_stage2):
optimizer.zero_grad()
bert_encoder_outputs = \
bert_stage2(
input_ids=episode_support_input_ids,
attention_mask=episode_support_attention_mask,
output_hidden_states=True
)
bert_encoder_output = (torch.sum(torch.stack(bert_encoder_outputs.hidden_states[-4:]), 0) / 4).squeeze(1)
if args.stage2_use_mlp:
bert_encoder_output = ModelStage2.mlp(bert_encoder_output)
bert_output_raw_flatten = torch.flatten(bert_encoder_output, start_dim=0, end_dim=1)[:]
labels_flatten = torch.flatten(episode_support_label_ids, start_dim=0, end_dim=1)[:]
filtered_indices_0 = torch.where(labels_flatten > 0)[0].cpu().numpy().tolist()
entity_bert_output = bert_output_raw_flatten[filtered_indices_0]
entity_label_ids = labels_flatten[filtered_indices_0] - 1
all_label_emb = ModelStage2.linear_layer.weight
logits = torch.matmul(entity_bert_output, all_label_emb.T)
loss = calculate_ce_loss(logits=logits,
label_ids=entity_label_ids,
weight=None)
avg_loss = loss / len(features)
print('### Current avg loss: ', avg_loss, ' ###')
if avg_loss > loss_before:
flag += 1
else:
flag = 0
loss_before = avg_loss
if flag > 0:
print('### Stop here: ', i, ' index batch ###')
break
# if avg_loss < args.finetune_target_threshold_stage2:
# print('### Stop here: ', i, ' index batch ###')
# print('### Current avg loss: ', avg_loss, ' ###')
# break
loss.backward()
optimizer.step()
return ModelStage2
def predict_stage2_cross_domain(args, bert_encoder_pt, all_proto_emb, span_preds, query_sentences, query_label_ids,
label_dict, label_types_id, span_threshold=0):
tmp_all_logits = []
preds = []
stage2_test_time_a = time.time()
for i, (span_pred, sentence, label_ids) in enumerate(tqdm(zip(span_preds, query_sentences, query_label_ids))):
if span_pred == []:
continue
# label_ids here is only used for identify the first token of a word,
# so no label information is used for predicting
feature = convert_to_feature(sentence, label_ids, args)
bert_encoder_outputs = \
bert_encoder_pt(
input_ids=torch.tensor([feature.input_ids]).to(args.device),
token_type_ids=torch.tensor([feature.token_type_ids]).to(args.device),
attention_mask=torch.tensor([feature.attention_mask]).to(args.device),
output_hidden_states=True
)
bert_encoder_output = (torch.sum(torch.stack(bert_encoder_outputs.hidden_states[-4:]), 0) / 4).squeeze(1)
bert_output_raw_flatten = torch.flatten(bert_encoder_output, start_dim=0, end_dim=1)[:]
labels_flatten = torch.tensor(feature.label_ids)[:]
filtered_indices = torch.where(labels_flatten >= 0)[0].cpu().numpy().tolist()
filtered_bert_output_raw_flatten = bert_output_raw_flatten[filtered_indices]
for span in span_pred:
span_emb = torch.mean(filtered_bert_output_raw_flatten[span["start"]:span["end"] + 1], 0)
if args.use_type_name:
cat_span_emb = torch.cat((span_emb, span_emb), dim=-1)
logit = torch.matmul(all_proto_emb, cat_span_emb)
else:
logit = torch.matmul(all_proto_emb, span_emb)
max_logit = torch.max(logit).detach().cpu().numpy()
pred = torch.argmax(logit).cpu().numpy()
if args.filter:
if max_logit / 2 > span_threshold:
preds.append(pred)
else:
preds.append(-1)
else:
preds.append(pred)
preds_label = []
for item in preds:
if item < 0:
preds_label.append(-1)
else:
preds_label.append(label_types_id[item])
idx_now = 0
# all_preds_label corresponds to the unfolded "span_preds".
# for example, span_preds=[[{"strat":1,"end":2},{"strat":3,"end":5}],], then all_preds_label=[[2,1],]
all_preds_label = []
for i, span_pred in enumerate(span_preds):
tmp = []
for j in range(idx_now, idx_now + len(span_pred)):
tmp.append(preds_label[j])
all_preds_label.append(tmp)
idx_now += len(span_pred)
stage_2_inference_time = time.time() - stage2_test_time_a
print(' stage2_test_time_b - stage2_test_time_a', stage_2_inference_time)
return all_preds_label, stage_2_inference_time
def predict_stage2_episode(args, bert_encoder_pt, all_proto_emb, span_preds, query_sentences, query_label_ids,
label_dict, label_types_id, span_threshold=0):
stage2_test_time_a = time.time()
tmp_all_logits = []
preds = []
query_features_input_ids = []
query_features_token_type_ids = []
query_features_attention_mask = []
query_features_label_ids = []
for i, (span_pred, sentence, label_ids) in enumerate(tqdm(zip(span_preds, query_sentences, query_label_ids))):
feature = convert_to_feature(sentence, label_ids, args)
query_features_input_ids.append(torch.tensor(feature.input_ids))
query_features_token_type_ids.append(torch.tensor(feature.token_type_ids))
query_features_attention_mask.append(torch.tensor(feature.attention_mask))
query_features_label_ids.append(torch.tensor(feature.label_ids))
query_features_input_ids = torch.stack(query_features_input_ids)
query_features_token_type_ids = torch.stack(query_features_token_type_ids)
query_features_attention_mask = torch.stack(query_features_attention_mask)
query_features_label_ids = torch.stack(query_features_label_ids)
bert_encoder_outputs = \
bert_encoder_pt(
input_ids=query_features_input_ids.to(args.device),
token_type_ids=query_features_token_type_ids.to(args.device),
attention_mask=query_features_attention_mask.to(args.device),
output_hidden_states=True
)
# print((torch.sum(torch.stack(bert_encoder_outputs.hidden_states[-4:]), 0) / 4).size())
bert_encoder_output = torch.sum(torch.stack(bert_encoder_outputs.hidden_states[-4:]), 0) / 4
bert_output_raw_flatten = torch.flatten(bert_encoder_output, start_dim=0, end_dim=1)[:]
# print(bert_output_raw_flatten.size())
labels_flatten = torch.tensor(torch.flatten(query_features_label_ids, start_dim=0, end_dim=1)[:].numpy().tolist())[:]
# print(labels_flatten.size())
filtered_indices = torch.where(labels_flatten >= 0)[0].cpu().numpy().tolist()
filtered_bert_output = bert_output_raw_flatten[filtered_indices]
# print(filtered_bert_output.size())
all_filtered_bert_output_raw_flatten = []
index_now = 0
for sentence in query_sentences:
len_sen = len(sentence)
filtered_bert_output_raw_flatten = filtered_bert_output[index_now:index_now + len_sen]
all_filtered_bert_output_raw_flatten.append(filtered_bert_output_raw_flatten)
index_now += len_sen
for i, (span_pred, filtered_bert_output_raw_flatten) in enumerate(
tqdm(zip(span_preds, all_filtered_bert_output_raw_flatten))):
if span_pred == []:
continue
for span in span_pred:
span_emb = torch.mean(filtered_bert_output_raw_flatten[span["start"]:span["end"] + 1], 0)
if args.use_type_name:
cat_span_emb = torch.cat((span_emb, span_emb), dim=-1)
logit = torch.matmul(all_proto_emb, cat_span_emb)
else:
logit = torch.matmul(all_proto_emb, span_emb)
tmp_all_logits.append(logit)
logits = torch.stack(tmp_all_logits)
logits_numpy = logits.detach().cpu().numpy()
logits_normalize = F.normalize(logits, p=2, dim=0)
raw_preds = torch.argmax(logits_normalize, -1).cpu().numpy().tolist()
if args.filter:
for logit_numpy, pred in zip(logits_numpy, raw_preds):
if max(logit_numpy) / 2 > span_threshold:
preds.append(pred)
else:
preds.append(-1)
else:
preds = raw_preds
preds_label = []
for item in preds:
if item < 0:
preds_label.append(-1)
else:
preds_label.append(label_types_id[item])
idx_now = 0
# all_preds_label corresponds to the unfolded "span_preds".
# for example, span_preds=[[{"strat":1,"end":2},{"strat":3,"end":5}],], then all_preds_label=[[2,1],]
all_preds_label = []
for i, span_pred in enumerate(span_preds):
tmp = []
for j in range(idx_now, idx_now + len(span_pred)):
tmp.append(preds_label[j])
all_preds_label.append(tmp)
idx_now += len(span_pred)
stage_2_inference_time = time.time() - stage2_test_time_a
print(' stage2_test_time_b - stage2_test_time_a', stage_2_inference_time)
return all_preds_label, stage_2_inference_time
def cal_f1(preds_label, span_preds, query_labels_ids):
tp = 0
num_pred = 0
num_gold = 0
for pred_label, span_pred, query_label_id in zip(preds_label, span_preds, query_labels_ids):
span_label_gold = extract_entity_span_label(query_label_id)
span_label_pred = []
for label, span in zip(pred_label, span_pred):
if label > 0:
span["label"] = label
span_label_pred.append(span)
num_pred += len(span_label_pred)
num_gold += len(span_label_gold)
for item in span_label_pred:
if item in span_label_gold:
tp += 1
if tp == 0:
precision = 0
recall = 0
f1 = 0
else:
precision = tp / num_pred
recall = tp / num_gold
f1 = 2 * precision * recall / (precision + recall)
print('tp', tp)
print('num_pred', num_pred)
print('num_gold', num_gold)
return f1, precision, recall
def evaluate_episodes(args):
################get episodes data ##################
episodes_data = read_episodes_data_from_file(filepath=args.filepath_target_episodes,
args=args,
start=args.test_episodes_num_start,
end=args.test_episodes_num)
#####################################################
metric_stage1_all, metric_all_stages_all, metric_stage1_filtered_all = {}, {}, {}
# 输出结果的文件
if not os.path.exists(args.results_dir):
os.makedirs(args.results_dir)
results_file = open(args.results_dir + args.dataset_target + args.n_way_k_shot + '.txt', 'a')
print('----------------------------------------------', file=results_file)
print('----------------------------------------------', file=results_file)
print('----------------------------------------------', file=results_file)
if not args.test_stage2_only:
ckpt_dir_stage1 = './checkpoint/' \
+ args.dataset_source \
+ '-' + args.mode \
+ '-' + args.type_mode \
+ '-' + str(args.seed) \
+ '/stage1/' \
+ args.IO_mode + '-' + 'bert_model_stage1.ckpt'
checkpoint_bert_model_stage1 = torch.load(ckpt_dir_stage1, map_location=args.device)
ModelStage1 = BertModelStage1(args).to(args.device)
ModelStage1.load_state_dict(checkpoint_bert_model_stage1['model_state_dict'])
# 加载第二阶段TRAIN 完成的 bert模型
if not args.test_stage1_only:
ckpt_dir_stage2 = './checkpoint/' + args.dataset_source \
+ '-' + args.mode \
+ '-' + args.type_mode \
+ '-' + str(args.seed) \
+ '/stage2/bert_model_stage2.ckpt'
checkpoint_bert_model_stage2 = torch.load(ckpt_dir_stage2, map_location=args.device)
ModelStage2 = BertModelStage2(args).to(args.device)
ModelStage2.load_state_dict(checkpoint_bert_model_stage2['model_state_dict'])
bert_encoder_pt = ModelStage2.encoder
# The test is given to the data of one episode at a time,
# and the model trained on source is loaded before each finetune.
num_true_stage1 = 0
num_pred_stage1 = 0
num_gold_stage1 = 0
num_true_stage1_filtered = 0
num_pred_stage1_filtered = 0
num_gold_stage1_filtered = 0
num_true_all_stages = 0
num_pred_all_stages = 0
num_gold_all_stages = 0
num_fp_all_stages = 0
num_fp_span_all_stages = 0
num_fp_type_all_stages = 0
num_fn_all_stages = 0
num_fn_span_all_stages = 0
num_fn_type_all_stages = 0
sum_inference_time = 0
for episode in tqdm(range(args.test_episodes_num - args.test_episodes_num_start)):
set_seeds(args)
if args.filter and (not args.test_stage1_only):
# Only if a filtering strategy is used and not only testing stage 1, the ModelStage2 will be loaded again
ModelStage2.linear_layer = nn.Linear(args.pretrained_model_hidden_size, args.source_class_num).to(
args.device)
ModelStage2.load_state_dict(checkpoint_bert_model_stage2['model_state_dict'])
results_file = open(args.results_dir + args.dataset_target + args.n_way_k_shot + '.txt', 'a')
print(args.dataset_target + args.n_way_k_shot, file=results_file)
print(args.test_episodes_num_start + episode, 'episode', file=results_file)
# no need to add args.test_episodes_num_start, because when we read episodes-date(read_episodes_data_from_file),
# we start from args.test_episodes_num_start
episode_data = episodes_data[episode]
span_preds = []
support_labels_ids = episode_data["support_labels_ids"]
support_sentences = episode_data["support_sentences"]
# 原型的获取
label_dict = {}
label_types_id = list(set([item for item_list in support_labels_ids for item in item_list]))
label_types_id.remove(0)
for i in range(len(label_types_id)):
label_dict[label_types_id[i]] = i
if not args.test_stage2_only:
######### reload the ModelStage1 ##########################
ModelStage1.load_state_dict(checkpoint_bert_model_stage1['model_state_dict'])
span_preds, metric_stage1 = adapt_predict_stage1_episode(args, episode_data, ModelStage1)
sum_inference_time += metric_stage1["stage_1_inference_time"]
num_true_stage1 += metric_stage1["num_true"]
num_pred_stage1 += metric_stage1["num_pred"]
num_gold_stage1 += metric_stage1["num_gold"]
precision_stage1 = num_true_stage1 / num_pred_stage1
recall_stage1 = num_true_stage1 / num_gold_stage1
f1_stage1 = 2 * precision_stage1 * recall_stage1 / (precision_stage1 + recall_stage1)
metric_stage1_all = {"f1": f1_stage1, "precision": precision_stage1, "recall": recall_stage1, }
print('Currently to', args.test_episodes_num_start + episode)
print('metric_stage1_all: ', metric_stage1_all)
print('Currently to', args.test_episodes_num_start + episode, file=results_file)
print('metric_stage1_all: ', metric_stage1_all, file=results_file)
elif args.test_stage2_only:
# If only the second stage is tested,
# then the results of the first stage span detection will be obtained from the label by default
span_preds = []
query_labels_ids = episode_data["query_labels_ids"]
query_label_io = convert_label_id_to_io(query_labels_ids)
for label_io in query_label_io:
span_preds.append(extract_entity_span(label_io))
if not args.test_stage1_only:
label_dict = {}
label_types_id = list(set([item for item_list in support_labels_ids for item in item_list]))
label_types_id.remove(0)
for i in range(len(label_types_id)):
label_dict[label_types_id[i]] = i
if args.filter:
# stage2_finetune_time_a = time.time()
ModelStage2 = adapt_stage2(args=args,
ModelStage2=ModelStage2,
sentences_support=support_sentences,
labels_ids_support=support_labels_ids,
label_types_id=label_types_id,
label_dict=label_dict,
)
# stage2_finetune_time_b = time.time()
# print('stage2_finetune_time_b - stage2_finetune_time_a', stage2_finetune_time_b - stage2_finetune_time_a)
bert_encoder_pt = ModelStage2.encoder
all_proto_emb_support = get_original_prototypes(args,
ModelStage2.encoder,
support_sentences,
support_labels_ids,
label_dict, label_types_id)
if args.use_type_name:
all_label_emb = get_proxy_label_emb(args, ModelStage2, label_types_id)
all_proto_emb = torch.cat((all_label_emb, all_proto_emb_support), dim=-1)
span_threshold = cal_span_threshold(args=args,
ModelStage2=ModelStage2,
all_label_emb=all_label_emb,
sentences_support=support_sentences,
labels_ids_support=support_labels_ids,
label_types_id=label_types_id,
label_dict=label_dict,
)
else:
all_proto_emb = all_proto_emb_support
span_threshold = 0
elif not args.filter:
all_proto_emb_support = get_original_prototypes(args, bert_encoder_pt, support_sentences,
support_labels_ids,
label_dict, label_types_id)
if args.use_type_name:
all_label_emb = get_proxy_label_emb(args, ModelStage2, label_types_id)
all_proto_emb = torch.cat((all_label_emb, all_proto_emb_support), dim=-1)
else:
all_proto_emb = all_proto_emb_support
span_threshold = 0
query_sentences = episode_data["query_sentences"]
query_labels_ids = episode_data["query_labels_ids"]
if args.test_stage2_only:
span_threshold = 0
preds_label, stage_2_inference_time = predict_stage2_episode(args,
bert_encoder_pt,
all_proto_emb,
span_preds,
query_sentences,
query_labels_ids,
label_dict,
label_types_id,
span_threshold=span_threshold)
sum_inference_time += stage_2_inference_time
for pred_label, span_pred, query_label_id in zip(preds_label, span_preds, query_labels_ids):
span_label_gold = extract_entity_span_label(query_label_id)
span_label_pred = []
for label, span in zip(pred_label, span_pred):
if label > 0:
span["label"] = label
span_label_pred.append(span)
num_pred_all_stages += len(span_label_pred)
num_gold_all_stages += len(span_label_gold)
for item in span_label_pred:
if item in span_label_gold:
num_true_all_stages += 1
# error analysis part
spans_pred = [{"start": item["start"], "end": item["end"]} for item in span_label_pred]
spans_gold = [{"start": item["start"], "end": item["end"]} for item in span_label_gold]
# print(spans_pred)
# print(spans_gold)
for item in span_label_pred:
if item not in span_label_gold:
num_fp_all_stages += 1
span_item = {"start": item["start"], "end": item["end"]}
if span_item in spans_gold:
num_fp_type_all_stages += 1
else:
num_fp_span_all_stages += 1
for item in span_label_gold:
if item not in span_label_pred:
num_fn_all_stages += 1
span_item = {"start": item["start"], "end": item["end"]}
if span_item in spans_pred:
# 因为type错了没召回
num_fn_type_all_stages += 1
else:
# 因为span错了没召回
num_fn_span_all_stages += 1
if args.filter:
copy_span_pred = []
copy_span_gold = []
for pred in span_label_pred:
copy_span_pred.append({"start": pred["start"], "end": pred["end"]})
for pred in span_label_gold:
copy_span_gold.append({"start": pred["start"], "end": pred["end"]})
num_pred_stage1_filtered += len(copy_span_pred)
num_gold_stage1_filtered += len(copy_span_gold)
for pred in copy_span_pred:
if pred in copy_span_gold:
num_true_stage1_filtered += 1
precision_all_stages = num_true_all_stages / num_pred_all_stages
recall_all_stages = num_true_all_stages / num_gold_all_stages
f1_all_stages = 2 * precision_all_stages * recall_all_stages / (precision_all_stages + recall_all_stages)
metric_all_stages_all = {"f1": f1_all_stages, "precision": precision_all_stages,
"recall": recall_all_stages, }
print('Currently to', args.test_episodes_num_start + episode)
print('metric_all_stages_all: ', metric_all_stages_all)
print('Currently to', args.test_episodes_num_start + episode, file=results_file)
print('metric_all_stages_all: ', metric_all_stages_all, file=results_file)
print('sum_inference_time', sum_inference_time)
print('episodes', episode + 1)
if args.filter:
precision_stage1_filtered = num_true_stage1_filtered / num_pred_stage1_filtered
recall_stage1_filtered = num_true_stage1_filtered / num_gold_stage1_filtered
f1_stage1_filtered = 2 * precision_stage1_filtered * recall_stage1_filtered / (
precision_stage1_filtered + recall_stage1_filtered)
metric_stage1_filtered_all = {"f1": f1_stage1_filtered, "precision": precision_stage1_filtered,
"recall": recall_stage1_filtered, }
print('Currently to', args.test_episodes_num_start + episode)
print('metric_stage1_filtered_all: ', metric_stage1_filtered_all)
print('Currently to', args.test_episodes_num_start + episode, file=results_file)
print('metric_stage1_filtered_all: ', metric_stage1_filtered_all, file=results_file)