forked from tyler-smith/go-bip32
-
Notifications
You must be signed in to change notification settings - Fork 3
/
slip10.go
318 lines (269 loc) · 7.85 KB
/
slip10.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
package slip10
import (
"bytes"
"crypto/elliptic"
"crypto/hmac"
"crypto/rand"
"crypto/sha512"
"encoding/hex"
"errors"
btcutil "github.com/FactomProject/btcutilecc"
)
var (
// CurveBitcoin generates keys for the secp256k1 curve (equivalent to BIP32)
CurveBitcoin = &curve{
Curve: btcutil.Secp256k1(),
hmacKey: []byte("Bitcoin seed"),
}
// CurveP256 generates keys for the NIST P-256 curve
CurveP256 = &curve{
Curve: elliptic.P256(),
hmacKey: []byte("Nist256p1 seed"),
}
)
const (
// FirstHardenedChild is the index of the firxt "harded" child key as per the
// bip32 spec
FirstHardenedChild = uint32(0x80000000)
// PublicKeyCompressedLength is the byte count of a compressed public key
PublicKeyCompressedLength = 33
)
var (
// PrivateWalletVersion is the version flag for serialized private keys
PrivateWalletVersion, _ = hex.DecodeString("0488ADE4")
// PublicWalletVersion is the version flag for serialized private keys
PublicWalletVersion, _ = hex.DecodeString("0488B21E")
// ErrSerializedKeyWrongSize is returned when trying to deserialize a key that
// has an incorrect length
ErrSerializedKeyWrongSize = errors.New("Serialized keys should by exactly 82 bytes")
// ErrHardnedChildPublicKey is returned when trying to create a harded child
// of the public key
ErrHardnedChildPublicKey = errors.New("Can't create hardened child for public key")
// ErrInvalidChecksum is returned when deserializing a key with an incorrect
// checksum
ErrInvalidChecksum = errors.New("Checksum doesn't match")
// ErrInvalidPrivateKey is returned when a derived private key is invalid
ErrInvalidPrivateKey = errors.New("Invalid private key")
// ErrInvalidPublicKey is returned when a derived public key is invalid
ErrInvalidPublicKey = errors.New("Invalid public key")
)
// Key represents a bip32 extended key
type Key struct {
Key []byte // 33 bytes
Version []byte // 4 bytes
ChildNumber []byte // 4 bytes
FingerPrint []byte // 4 bytes
ChainCode []byte // 32 bytes
Depth byte // 1 bytes
IsPrivate bool // unserialized
curve *curve
}
// NewMasterKey creates a new Bitcoin master extended key from a seed
func NewMasterKey(seed []byte) (*Key, error) {
return NewMasterKeyWithCurve(seed, CurveBitcoin)
}
// NewMasterKey creates a new master extended key from a seed using the given curve
func NewMasterKeyWithCurve(seed []byte, curve *curve) (*Key, error) {
// Generate key and chaincode
hmac := hmac.New(sha512.New, curve.hmacKey)
_, err := hmac.Write(seed)
if err != nil {
return nil, err
}
intermediary := hmac.Sum(nil)
// Split it into our key and chain code
keyBytes := intermediary[:32]
chainCode := intermediary[32:]
// Validate key
err = curve.validatePrivateKey(keyBytes)
if err != nil {
return nil, err
}
// Create the key struct
key := &Key{
Version: PrivateWalletVersion,
ChainCode: chainCode,
Key: keyBytes,
Depth: 0x0,
ChildNumber: []byte{0x00, 0x00, 0x00, 0x00},
FingerPrint: []byte{0x00, 0x00, 0x00, 0x00},
IsPrivate: true,
curve: curve,
}
return key, nil
}
// NewChildKey derives a child key from a given parent as outlined by bip32
func (key *Key) NewChildKey(childIdx uint32) (*Key, error) {
// Fail early if trying to create hardned child from public key
if !key.IsPrivate && childIdx >= FirstHardenedChild {
return nil, ErrHardnedChildPublicKey
}
intermediary, err := key.getIntermediary(childIdx)
if err != nil {
return nil, err
}
// Create child Key with data common to all both scenarios
childKey := &Key{
ChildNumber: uint32Bytes(childIdx),
ChainCode: intermediary[32:],
Depth: key.Depth + 1,
IsPrivate: key.IsPrivate,
curve: key.curve,
}
// Bip32 CKDpriv
if key.IsPrivate {
childKey.Version = PrivateWalletVersion
fingerprint, err := hash160(key.curve.publicKeyForPrivateKey(key.Key))
if err != nil {
return nil, err
}
childKey.FingerPrint = fingerprint[:4]
childKey.Key = key.curve.addPrivateKeys(intermediary[:32], key.Key)
// Validate key
err = key.curve.validatePrivateKey(childKey.Key)
if err != nil {
return nil, err
}
// Bip32 CKDpub
} else {
keyBytes := key.curve.publicKeyForPrivateKey(intermediary[:32])
// Validate key
err := key.curve.validateChildPublicKey(keyBytes)
if err != nil {
return nil, err
}
childKey.Version = PublicWalletVersion
fingerprint, err := hash160(key.Key)
if err != nil {
return nil, err
}
childKey.FingerPrint = fingerprint[:4]
childKey.Key = key.curve.addPublicKeys(keyBytes, key.Key)
}
return childKey, nil
}
func (key *Key) getIntermediary(childIdx uint32) ([]byte, error) {
// Get intermediary to create key and chaincode from
// Hardened children are based on the private key
// NonHardened children are based on the public key
childIndexBytes := uint32Bytes(childIdx)
var data []byte
if childIdx >= FirstHardenedChild {
data = append([]byte{0x0}, key.Key...)
} else {
if key.IsPrivate {
data = key.curve.publicKeyForPrivateKey(key.Key)
} else {
data = key.Key
}
}
data = append(data, childIndexBytes...)
hmac := hmac.New(sha512.New, key.ChainCode)
_, err := hmac.Write(data)
if err != nil {
return nil, err
}
return hmac.Sum(nil), nil
}
// PublicKey returns the public version of key or return a copy
// The 'Neuter' function from the bip32 spec
func (key *Key) PublicKey() *Key {
keyBytes := key.Key
if key.IsPrivate {
keyBytes = key.curve.publicKeyForPrivateKey(keyBytes)
}
return &Key{
Version: PublicWalletVersion,
Key: keyBytes,
Depth: key.Depth,
ChildNumber: key.ChildNumber,
FingerPrint: key.FingerPrint,
ChainCode: key.ChainCode,
IsPrivate: false,
curve: key.curve,
}
}
// Serialize a Key to a 78 byte byte slice
func (key *Key) Serialize() ([]byte, error) {
if key.curve != CurveBitcoin {
return nil, errors.New("serialization only supported for Bitcoin keys")
}
// Private keys should be prepended with a single null byte
keyBytes := key.Key
if key.IsPrivate {
keyBytes = append([]byte{0x0}, keyBytes...)
}
// Write fields to buffer in order
buffer := new(bytes.Buffer)
buffer.Write(key.Version)
buffer.WriteByte(key.Depth)
buffer.Write(key.FingerPrint)
buffer.Write(key.ChildNumber)
buffer.Write(key.ChainCode)
buffer.Write(keyBytes)
// Append the standard doublesha256 checksum
serializedKey, err := addChecksumToBytes(buffer.Bytes())
if err != nil {
return nil, err
}
return serializedKey, nil
}
// B58Serialize encodes the Key in the standard Bitcoin base58 encoding
func (key *Key) B58Serialize() string {
serializedKey, err := key.Serialize()
if err != nil {
return ""
}
return base58Encode(serializedKey)
}
// String encodes the Key in the standard Bitcoin base58 encoding
func (key *Key) String() string {
return key.B58Serialize()
}
// Deserialize a byte slice into a Key
func Deserialize(data []byte) (*Key, error) {
if len(data) != 82 {
return nil, ErrSerializedKeyWrongSize
}
var key = &Key{}
key.Version = data[0:4]
key.Depth = data[4]
key.FingerPrint = data[5:9]
key.ChildNumber = data[9:13]
key.ChainCode = data[13:45]
key.curve = CurveBitcoin
if data[45] == byte(0) {
key.IsPrivate = true
key.Key = data[46:78]
} else {
key.IsPrivate = false
key.Key = data[45:78]
}
// validate checksum
cs1, err := checksum(data[0 : len(data)-4])
if err != nil {
return nil, err
}
cs2 := data[len(data)-4:]
for i := range cs1 {
if cs1[i] != cs2[i] {
return nil, ErrInvalidChecksum
}
}
return key, nil
}
// B58Deserialize deserializes a Key encoded in base58 encoding
func B58Deserialize(data string) (*Key, error) {
b, err := base58Decode(data)
if err != nil {
return nil, err
}
return Deserialize(b)
}
// NewSeed returns a cryptographically secure seed
func NewSeed() ([]byte, error) {
// Well that easy, just make go read 256 random bytes into a slice
s := make([]byte, 256)
_, err := rand.Read(s)
return s, err
}