-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathgru.py
271 lines (231 loc) · 10 KB
/
gru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2020 LMNT, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gated Recurrent Unit"""
import haste_pytorch_lib as LIB
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base_rnn import BaseRNN
__all__ = [
'GRU'
]
#@torch.jit.script
def GRUScript(
training: bool,
zoneout_prob: float,
input,
h0,
kernel,
recurrent_kernel,
bias,
recurrent_bias,
zoneout_mask):
time_steps = input.shape[0]
batch_size = input.shape[1]
hidden_size = recurrent_kernel.shape[0]
h = [h0]
Wx = input @ kernel + bias
for t in range(time_steps):
Rh = h[t] @ recurrent_kernel + recurrent_bias
vx = torch.chunk(Wx[t], 3, 1)
vh = torch.chunk(Rh, 3, 1)
z = torch.sigmoid(vx[0] + vh[0])
r = torch.sigmoid(vx[1] + vh[1])
g = torch.tanh(vx[2] + r * vh[2])
h.append(z * h[t] + (1 - z) * g)
if zoneout_prob:
if training:
h[-1] = (h[-1] - h[-2]) * zoneout_mask[t] + h[-2]
else:
h[-1] = zoneout_prob * h[-2] + (1 - zoneout_prob) * h[-1]
h = torch.stack(h)
return h
class GRUFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, training, zoneout_prob, *inputs):
h, cache = LIB.gru_forward(training, zoneout_prob, *inputs)
ctx.save_for_backward(inputs[0], *inputs[2:], h, cache)
ctx.mark_non_differentiable(inputs[-1])
ctx.training = training
return h
@staticmethod
def backward(ctx, grad_h):
if not ctx.training:
raise RuntimeError('GRU backward can only be called in training mode')
saved = [*ctx.saved_tensors]
saved[0] = saved[0].permute(2, 0, 1).contiguous()
saved[1] = saved[1].permute(1, 0).contiguous()
saved[2] = saved[2].permute(1, 0).contiguous()
grads = LIB.gru_backward(*saved, grad_h.contiguous())
return (None, None, *grads, None)
class GRU(BaseRNN):
"""
Gated Recurrent Unit layer.
This GRU layer offers a fused, GPU-accelerated PyTorch op for inference
and training. There are two commonly-used variants of GRU cells. This one
implements 1406.1078v1 which applies the reset gate to the hidden state
after matrix multiplication. cuDNN also implements this variant. The other
variant, 1406.1078v3, applies the reset gate before matrix multiplication
and is currently unsupported.
This layer has built-in support for DropConnect and Zoneout, which are
both techniques used to regularize RNNs.
See [\_\_init\_\_](#__init__) and [forward](#forward) for usage.
See [from_native_weights](#from_native_weights) and
[to_native_weights](#to_native_weights) for compatibility with PyTorch GRUs.
"""
def __init__(self,
input_size,
hidden_size,
batch_first=False,
dropout=0.0,
zoneout=0.0,
return_state_sequence=False):
"""
Initialize the parameters of the GRU layer.
Arguments:
input_size: int, the feature dimension of the input.
hidden_size: int, the feature dimension of the output.
batch_first: (optional) bool, if `True`, then the input and output
tensors are provided as `(batch, seq, feature)`.
dropout: (optional) float, sets the dropout rate for DropConnect
regularization on the recurrent matrix.
zoneout: (optional) float, sets the zoneout rate for Zoneout
regularization.
return_state_sequence: (optional) bool, if `True`, the forward pass will
return the entire state sequence instead of just the final state. Note
that if the input is a padded sequence, the returned state will also
be a padded sequence.
Variables:
kernel: the input projection weight matrix. Dimensions
(input_size, hidden_size * 3) with `z,r,h` gate layout. Initialized
with Xavier uniform initialization.
recurrent_kernel: the recurrent projection weight matrix. Dimensions
(hidden_size, hidden_size * 3) with `z,r,h` gate layout. Initialized
with orthogonal initialization.
bias: the input projection bias vector. Dimensions (hidden_size * 3) with
`z,r,h` gate layout. Initialized to zeros.
recurrent_bias: the recurrent projection bias vector. Dimensions
(hidden_size * 3) with `z,r,h` gate layout. Initialized to zeros.
"""
super().__init__(input_size, hidden_size, batch_first, zoneout, return_state_sequence)
if dropout < 0 or dropout > 1:
raise ValueError('GRU: dropout must be in [0.0, 1.0]')
if zoneout < 0 or zoneout > 1:
raise ValueError('GRU: zoneout must be in [0.0, 1.0]')
self.dropout = dropout
self.kernel = nn.Parameter(torch.empty(input_size, hidden_size * 3))
self.recurrent_kernel = nn.Parameter(torch.empty(hidden_size, hidden_size * 3))
self.bias = nn.Parameter(torch.empty(hidden_size * 3))
self.recurrent_bias = nn.Parameter(torch.empty(hidden_size * 3))
self.reset_parameters()
def to_native_weights(self):
"""
Converts Haste GRU weights to native PyTorch GRU weights.
Returns:
weight_ih_l0: Parameter, the input-hidden weights of the GRU layer.
weight_hh_l0: Parameter, the hidden-hidden weights of the GRU layer.
bias_ih_l0: Parameter, the input-hidden bias of the GRU layer.
bias_hh_l0: Parameter, the hidden-hidden bias of the GRU layer.
"""
def reorder_weights(w):
z, r, n = torch.chunk(w, 3, dim=-1)
return torch.cat([r, z, n], dim=-1)
kernel = reorder_weights(self.kernel).permute(1, 0).contiguous()
recurrent_kernel = reorder_weights(self.recurrent_kernel).permute(1, 0).contiguous()
bias1 = reorder_weights(self.bias).contiguous()
bias2 = reorder_weights(self.recurrent_bias).contiguous()
kernel = torch.nn.Parameter(kernel)
recurrent_kernel = torch.nn.Parameter(recurrent_kernel)
bias1 = torch.nn.Parameter(bias1)
bias2 = torch.nn.Parameter(bias2)
return kernel, recurrent_kernel, bias1, bias2
def from_native_weights(self, weight_ih_l0, weight_hh_l0, bias_ih_l0, bias_hh_l0):
"""
Copies and converts the provided PyTorch GRU weights into this layer.
Arguments:
weight_ih_l0: Parameter, the input-hidden weights of the PyTorch GRU layer.
weight_hh_l0: Parameter, the hidden-hidden weights of the PyTorch GRU layer.
bias_ih_l0: Parameter, the input-hidden bias of the PyTorch GRU layer.
bias_hh_l0: Parameter, the hidden-hidden bias of the PyTorch GRU layer.
"""
def reorder_weights(w):
r, z, n = torch.chunk(w, 3, axis=-1)
return torch.cat([z, r, n], dim=-1)
kernel = reorder_weights(weight_ih_l0.permute(1, 0)).contiguous()
recurrent_kernel = reorder_weights(weight_hh_l0.permute(1, 0)).contiguous()
bias = reorder_weights(bias_ih_l0).contiguous()
recurrent_bias = reorder_weights(bias_hh_l0).contiguous()
self.kernel = nn.Parameter(kernel)
self.recurrent_kernel = nn.Parameter(recurrent_kernel)
self.bias = nn.Parameter(bias)
self.recurrent_bias = nn.Parameter(recurrent_bias)
def reset_parameters(self):
"""Resets this layer's parameters to their initial values."""
hidden_size = self.hidden_size
for i in range(3):
nn.init.xavier_uniform_(self.kernel[:, i*hidden_size:(i+1)*hidden_size])
nn.init.orthogonal_(self.recurrent_kernel[:, i*hidden_size:(i+1)*hidden_size])
nn.init.zeros_(self.bias)
nn.init.zeros_(self.recurrent_bias)
def forward(self, input, state=None, lengths=None):
"""
Runs a forward pass of the GRU layer.
Arguments:
input: Tensor, a batch of input sequences to pass through the GRU.
Dimensions (seq_len, batch_size, input_size) if `batch_first` is
`False`, otherwise (batch_size, seq_len, input_size).
lengths: (optional) Tensor, list of sequence lengths for each batch
element. Dimension (batch_size). This argument may be omitted if
all batch elements are unpadded and have the same sequence length.
Returns:
output: Tensor, the output of the GRU layer. Dimensions
(seq_len, batch_size, hidden_size) if `batch_first` is `False` (default)
or (batch_size, seq_len, hidden_size) if `batch_first` is `True`. Note
that if `lengths` was specified, the `output` tensor will not be
masked. It's the caller's responsibility to either not use the invalid
entries or to mask them out before using them.
h_n: the hidden state for the last sequence item. Dimensions
(1, batch_size, hidden_size).
"""
input = self._permute(input)
state_shape = [1, input.shape[1], self.hidden_size]
h0 = self._get_state(input, state, state_shape)
h = self._impl(input, h0[0], self._get_zoneout_mask(input))
state = self._get_final_state(h, lengths)
output = self._permute(h[1:])
return output, state
def _impl(self, input, state, zoneout_mask):
if self._is_cuda():
return GRUFunction.apply(
self.training,
self.zoneout,
input.contiguous(),
state.contiguous(),
self.kernel.contiguous(),
F.dropout(self.recurrent_kernel, self.dropout, self.training).contiguous(),
self.bias.contiguous(),
self.recurrent_bias.contiguous(),
zoneout_mask.contiguous())
else:
return GRUScript(
self.training,
self.zoneout,
input.contiguous(),
state.contiguous(),
self.kernel.contiguous(),
F.dropout(self.recurrent_kernel, self.dropout, self.training).contiguous(),
self.bias.contiguous(),
self.recurrent_bias.contiguous(),
zoneout_mask.contiguous())