-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathlstm.py
265 lines (231 loc) · 9.92 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2020 LMNT, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Long Short-Term Memory"""
import haste_pytorch_lib as LIB
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base_rnn import BaseRNN
__all__ = [
'LSTM'
]
#@torch.jit.script
def LSTMScript(
training: bool,
zoneout_prob: float,
input,
h0,
c0,
kernel,
recurrent_kernel,
bias,
zoneout_mask):
time_steps = input.shape[0]
batch_size = input.shape[1]
hidden_size = recurrent_kernel.shape[0]
h = [h0]
c = [c0]
Wx = input @ kernel
for t in range(time_steps):
v = h[t] @ recurrent_kernel + Wx[t] + bias
i, g, f, o = torch.chunk(v, 4, 1)
i = torch.sigmoid(i)
g = torch.tanh(g)
f = torch.sigmoid(f)
o = torch.sigmoid(o)
c.append(f * c[t] + i * g)
h.append(o * torch.tanh(c[-1]))
if zoneout_prob:
if training:
h[-1] = (h[-1] - h[-2]) * zoneout_mask[t] + h[-2]
else:
h[-1] = zoneout_prob * h[-2] + (1 - zoneout_prob) * h[-1]
h = torch.stack(h)
c = torch.stack(c)
return h, c
class LSTMFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, training, zoneout_prob, *inputs):
h, c, cache = LIB.lstm_forward(training, zoneout_prob, *inputs)
ctx.save_for_backward(inputs[0], *inputs[3:], h, c, cache)
ctx.mark_non_differentiable(inputs[-1])
ctx.training = training
return h, c
@staticmethod
def backward(ctx, grad_h, grad_c):
if not ctx.training:
raise RuntimeError('LSTM backward can only be called in training mode')
saved = [*ctx.saved_tensors]
saved[0] = saved[0].permute(2, 0, 1).contiguous()
saved[1] = saved[1].permute(1, 0).contiguous()
saved[2] = saved[2].permute(1, 0).contiguous()
grads = LIB.lstm_backward(*saved, grad_h.contiguous(), grad_c.contiguous())
return (None, None, *grads, None)
class LSTM(BaseRNN):
"""
Long Short-Term Memory layer.
This LSTM layer offers a fused, GPU-accelerated PyTorch op for inference
and training. Although this implementation is comparable in performance to
cuDNN's LSTM, it offers additional options not typically found in other
high-performance implementations. DropConnect and Zoneout regularization are
built-in, and this layer allows setting a non-zero initial forget gate bias.
See [\_\_init\_\_](#__init__) and [forward](#forward) for general usage.
See [from_native_weights](#from_native_weights) and
[to_native_weights](#to_native_weights) for compatibility with PyTorch LSTMs.
"""
def __init__(self,
input_size,
hidden_size,
batch_first=False,
forget_bias=1.0,
dropout=0.0,
zoneout=0.0,
return_state_sequence=False):
"""
Initialize the parameters of the LSTM layer.
Arguments:
input_size: int, the feature dimension of the input.
hidden_size: int, the feature dimension of the output.
batch_first: (optional) bool, if `True`, then the input and output
tensors are provided as `(batch, seq, feature)`.
forget_bias: (optional) float, sets the initial bias of the forget gate
for this LSTM cell.
dropout: (optional) float, sets the dropout rate for DropConnect
regularization on the recurrent matrix.
zoneout: (optional) float, sets the zoneout rate for Zoneout
regularization.
return_state_sequence: (optional) bool, if `True`, the forward pass will
return the entire state sequence instead of just the final state. Note
that if the input is a padded sequence, the returned state will also
be a padded sequence.
Variables:
kernel: the input projection weight matrix. Dimensions
(input_size, hidden_size * 4) with `i,g,f,o` gate layout. Initialized
with Xavier uniform initialization.
recurrent_kernel: the recurrent projection weight matrix. Dimensions
(hidden_size, hidden_size * 4) with `i,g,f,o` gate layout. Initialized
with orthogonal initialization.
bias: the projection bias vector. Dimensions (hidden_size * 4) with
`i,g,f,o` gate layout. The forget gate biases are initialized to
`forget_bias` and the rest are zeros.
"""
super().__init__(input_size, hidden_size, batch_first, zoneout, return_state_sequence)
if dropout < 0 or dropout > 1:
raise ValueError('LSTM: dropout must be in [0.0, 1.0]')
if zoneout < 0 or zoneout > 1:
raise ValueError('LSTM: zoneout must be in [0.0, 1.0]')
self.forget_bias = forget_bias
self.dropout = dropout
self.kernel = nn.Parameter(torch.empty(input_size, hidden_size * 4))
self.recurrent_kernel = nn.Parameter(torch.empty(hidden_size, hidden_size * 4))
self.bias = nn.Parameter(torch.empty(hidden_size * 4))
self.reset_parameters()
def to_native_weights(self):
"""
Converts Haste LSTM weights to native PyTorch LSTM weights.
Returns:
weight_ih_l0: Parameter, the input-hidden weights of the LSTM layer.
weight_hh_l0: Parameter, the hidden-hidden weights of the LSTM layer.
bias_ih_l0: Parameter, the input-hidden bias of the LSTM layer.
bias_hh_l0: Parameter, the hidden-hidden bias of the LSTM layer.
"""
def reorder_weights(w):
i, g, f, o = torch.chunk(w, 4, dim=-1)
return torch.cat([i, f, g, o], dim=-1)
kernel = reorder_weights(self.kernel).permute(1, 0).contiguous()
recurrent_kernel = reorder_weights(self.recurrent_kernel).permute(1, 0).contiguous()
half_bias = reorder_weights(self.bias) / 2.0
kernel = torch.nn.Parameter(kernel)
recurrent_kernel = torch.nn.Parameter(recurrent_kernel)
bias1 = torch.nn.Parameter(half_bias)
bias2 = torch.nn.Parameter(half_bias.clone())
return kernel, recurrent_kernel, bias1, bias2
def from_native_weights(self, weight_ih_l0, weight_hh_l0, bias_ih_l0, bias_hh_l0):
"""
Copies and converts the provided PyTorch LSTM weights into this layer.
Arguments:
weight_ih_l0: Parameter, the input-hidden weights of the PyTorch LSTM layer.
weight_hh_l0: Parameter, the hidden-hidden weights of the PyTorch LSTM layer.
bias_ih_l0: Parameter, the input-hidden bias of the PyTorch LSTM layer.
bias_hh_l0: Parameter, the hidden-hidden bias of the PyTorch LSTM layer.
"""
def reorder_weights(w):
i, f, g, o = torch.chunk(w, 4, dim=-1)
return torch.cat([i, g, f, o], dim=-1)
kernel = reorder_weights(weight_ih_l0.permute(1, 0)).contiguous()
recurrent_kernel = reorder_weights(weight_hh_l0.permute(1, 0)).contiguous()
bias = reorder_weights(bias_ih_l0 + bias_hh_l0).contiguous()
self.kernel = nn.Parameter(kernel)
self.recurrent_kernel = nn.Parameter(recurrent_kernel)
self.bias = nn.Parameter(bias)
def reset_parameters(self):
"""Resets this layer's parameters to their initial values."""
hidden_size = self.hidden_size
for i in range(4):
nn.init.xavier_uniform_(self.kernel[:, i*hidden_size:(i+1)*hidden_size])
nn.init.orthogonal_(self.recurrent_kernel[:, i*hidden_size:(i+1)*hidden_size])
nn.init.zeros_(self.bias)
nn.init.constant_(self.bias[hidden_size*2:hidden_size*3], self.forget_bias)
def forward(self, input, state=None, lengths=None):
"""
Runs a forward pass of the LSTM layer.
Arguments:
input: Tensor, a batch of input sequences to pass through the LSTM.
Dimensions (seq_len, batch_size, input_size) if `batch_first` is
`False`, otherwise (batch_size, seq_len, input_size).
lengths: (optional) Tensor, list of sequence lengths for each batch
element. Dimension (batch_size). This argument may be omitted if
all batch elements are unpadded and have the same sequence length.
Returns:
output: Tensor, the output of the LSTM layer. Dimensions
(seq_len, batch_size, hidden_size) if `batch_first` is `False` (default)
or (batch_size, seq_len, hidden_size) if `batch_first` is `True`. Note
that if `lengths` was specified, the `output` tensor will not be
masked. It's the caller's responsibility to either not use the invalid
entries or to mask them out before using them.
(h_n, c_n): the hidden and cell states, respectively, for the last
sequence item. Dimensions (1, batch_size, hidden_size).
"""
input = self._permute(input)
state_shape = [1, input.shape[1], self.hidden_size]
state_shape = (state_shape, state_shape)
h0, c0 = self._get_state(input, state, state_shape)
h, c = self._impl(input, (h0[0], c0[0]), self._get_zoneout_mask(input))
state = self._get_final_state((h, c), lengths)
output = self._permute(h[1:])
return output, state
def _impl(self, input, state, zoneout_mask):
if self._is_cuda():
return LSTMFunction.apply(
self.training,
self.zoneout,
input.contiguous(),
state[0].contiguous(),
state[1].contiguous(),
self.kernel.contiguous(),
F.dropout(self.recurrent_kernel, self.dropout, self.training).contiguous(),
self.bias.contiguous(),
zoneout_mask.contiguous())
else:
return LSTMScript(
self.training,
self.zoneout,
input.contiguous(),
state[0].contiguous(),
state[1].contiguous(),
self.kernel.contiguous(),
F.dropout(self.recurrent_kernel, self.dropout, self.training).contiguous(),
self.bias.contiguous(),
zoneout_mask.contiguous())