forked from NanNanmei/BFINet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
accuracy_evaluation.py
180 lines (141 loc) · 5.42 KB
/
accuracy_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
from torch.utils.data import DataLoader
from dataset import DatasetImageMaskContourDist
import glob
from models import BFINet
from tqdm import tqdm
import numpy as np
import cv2
from utils import create_validation_arg_parser
from scipy import stats
from skimage import morphology
import os
from torch import nn
def align_dims(np_input, expected_dims=2):
dim_input = len(np_input.shape)
np_output = np_input
if dim_input > expected_dims:
np_output = np_input.squeeze(0)
elif dim_input < expected_dims:
np_output = np.expand_dims(np_input, 0)
assert len(np_output.shape) == expected_dims
return np_output
def binary_accuracy(pred, label):
pred = align_dims(pred, 2)
label = align_dims(label, 2)
pred = (pred >= 0.5)
label = (label >= 0.5)
TP = float((pred * label).sum())
FP = float((pred * (1 - label)).sum())
FN = float(((1 - pred) * (label)).sum())
TN = float(((1 - pred) * (1 - label)).sum())
precision = TP / (TP + FP + 1e-10)
recall = TP / (TP + FN + 1e-10)
IoU = TP / (TP + FP + FN + 1e-10)
acc = (TP + TN) / (TP + FP + FN + TN)
F1 = 0
if acc > 0.99 and TP == 0:
precision = 1
recall = 1
IoU = 1
if precision > 0 and recall > 0:
F1 = stats.hmean([precision, recall])
return acc, precision, recall, F1, IoU
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.initialized = False
self.val = None
self.avg = None
self.sum = None
self.count = None
def initialize(self, val, count, weight):
self.val = val
self.avg = val
self.count = count
self.sum = val * weight
self.initialized = True
def update(self, val, count=1, weight=1):
if not self.initialized:
self.initialize(val, count, weight)
else:
self.add(val, count, weight)
def add(self, val, count, weight):
self.val = val
self.count += count
self.sum += val * weight
self.avg = self.sum / self.count
def value(self):
return self.val
def average(self):
return self.avg
def build_model(model_type):
if model_type == "field":
model = BFINet(path=r'E:\new_parcel_model\New_0415\preweight\pvt_v2_b2.pth')
return model
if __name__ == "__main__":
args = create_validation_arg_parser().parse_args()
args.val_path = r'D:\ss\BFI\HN_test\image'
val_path = os.path.join(args.val_path, "*.tif")
model_file = args.model_file = './weight/100.pt'
save_path = args.save_path = './results'
model_type = args.model_type = 'field'
f = open('./accuracy.txt', 'w+')
cuda_no = args.cuda_no
CUDA_SELECT = "cuda:{}".format(cuda_no)
device = torch.device(CUDA_SELECT if torch.cuda.is_available() else "cpu")
val_file_names = glob.glob(val_path)
valLoader = DataLoader(DatasetImageMaskContourDist(val_file_names))
if not os.path.exists(save_path):
os.mkdir(save_path)
model = build_model(model_type)
model = nn.DataParallel(model) # 自己加的
model = model.to(device)
model.load_state_dict(torch.load(model_file, map_location=torch.device(device)))
model.eval()
acc_meter = AverageMeter()
precision_meter = AverageMeter()
recall_meter = AverageMeter()
F1_meter = AverageMeter()
IoU_meter = AverageMeter()
total_iter = len(val_file_names)
for i, (img_file_name, inputs, targets1, targets2) in enumerate(
tqdm(valLoader)
):
inputs = inputs.to(device)
targets1 = targets1.to(device)
outputs1, outputs2 = model(inputs)
###
# outputs4,outputs5 = model(torch.flip(inputs, [-1]))
# predict_2 = torch.flip(outputs4, [-1])
# outputs7,outputs8= model(torch.flip(inputs, [-2]))
# predict_3 = torch.flip(outputs7, [-2])
# outputs10,outputs11 = model(torch.flip(inputs, [-1, -2]))
# predict_4 = torch.flip(outputs10, [-1, -2])
# predict_list = outputs1 + predict_2 + predict_3 + predict_4
# pred = predict_list/4
outputs1 = outputs1.detach().cpu().numpy().squeeze()
targets1 = targets1.detach().cpu().numpy().squeeze()
res = np.zeros((256, 256))
# indices = np.argmax(outputs1, axis=0) ##
res[outputs1>0.5] = 255
res[outputs1<=0.5] = 0
# res = morphology.remove_small_objects(res.astype(int), 1000) #
acc, precision, recall, F1, IoU = binary_accuracy(res, targets1)
acc_meter.update(acc)
precision_meter.update(precision)
recall_meter.update(recall)
F1_meter.update(F1)
IoU_meter.update(IoU)
res = np.array(res, dtype='uint8')
output_path = os.path.join(
save_path, os.path.basename(img_file_name[0])
)
cv2.imwrite(output_path, res)
print('Eval num %d/%d, Acc %.2f, precision %.2f, recall %.2f, F1 %.2f, IoU %.2f' % (
i, total_iter, acc * 100, precision * 100, recall * 100, F1 * 100, IoU * 100))
f.write('Eval num %d/%d, Acc %.2f, precision %.2f, recall %.2f, F1 %.2f, IoU %.2f\n' % (
i, total_iter, acc * 100, precision * 100, recall * 100, F1 * 100, IoU * 100))
print('avg Acc %.2f, Pre %.2f, Recall %.2f, F1 %.2f, IOU %.2f' % (
acc_meter.avg * 100, precision_meter.avg * 100, recall_meter.avg * 100, F1_meter.avg * 100,
IoU_meter.avg * 100))