-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
268 lines (218 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import yaml
import datetime
import warnings
from collections import OrderedDict
from argparse import ArgumentParser
from easydict import EasyDict
from tqdm import tqdm
import torch
from torch.nn import CrossEntropyLoss
from torch.optim import SGD
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from models import *
from data import ILSVRC2012Dataset, get_train_transforms, get_valid_transforms
from utils import errors, AverageMeter
warnings.filterwarnings('ignore')
class Trainer:
def __init__(self, cfgs, model):
"""
Args:
cfgs (class): a class holding configs for training
model (torch.nn.Module): the model architecture to be trained
"""
self.cfgs = cfgs
self.model = model
self.start_epoch = 1
self.best_err1 = 1.1
self.device = torch.device(cfgs.gpu if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self.criterion = CrossEntropyLoss().to(self.device)
self.optimizer = SGD(self.model.parameters(), lr=cfgs.lr, weight_decay=cfgs.weight_decay,
momentum=cfgs.momentum)
self.scheduler = ReduceLROnPlateau(self.optimizer, factor=cfgs.factor, mode='min', patience=1,
verbose=False, threshold=1e-4, threshold_mode='abs',
cooldown=0, min_lr=1e-8, eps=1e-08)
# optionally resume from a checkpoint
if cfgs.resume:
if os.path.isfile(cfgs.resume):
print("=> loading checkpoint '{}'".format(cfgs.resume))
checkpoint = torch.load(cfgs.resume, map_location=self.device)
self.load(cfgs.resume)
print("=> loaded checkpoint '{}' (epoch {})".format(cfgs.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(cfgs.resume))
# create directory to checkpoint if necessary
if not os.path.exists(cfgs.save_dir):
os.makedirs(cfgs.save_dir)
# create directory to training logs if necessary
if not os.path.exists(cfgs.log_dir):
os.makedirs(cfgs.log_dir)
self.writer = SummaryWriter(log_dir=cfgs.log_dir)
self.log('Trainer prepared in device: {}'.format(torch.cuda.get_device_name(self.device)))
def fit(self, train_loader, valid_loader):
"""
train and validate the model
Args:
train_loader (torch.utils.data.DataLoader): DataLoader instance object for training set
valid_loader (torch.utils.data.DataLoader): DataLoader instance object for validation set
"""
for epoch in range(self.start_epoch, self.cfgs.epochs + 1):
if self.cfgs.verbose:
lr = self.optimizer.param_groups[0]['lr']
timestamp = datetime.datetime.now().isoformat()
self.log('{}\tEpoch: {}\tLR: {}'.format(timestamp, epoch, lr))
# train for an epoch
err1, err5 = self.train(epoch, train_loader)
self.save(epoch, f'{self.cfgs.save_dir}/last_checkpoint.pth')
self.log(f'[RESULT]: Train Epoch: {epoch}\t top-1 err: {err1:6.4f}\t top-5 err: {err5:6.4f}')
self.writer.add_scalars('top-1 Error Rate', {'train': err1}, epoch)
self.writer.add_scalars('top-5 Error Rate', {'train': err5}, epoch)
# validate
err1, err5 = self.validate(epoch, valid_loader)
if err1 < self.best_err1:
self.best_err1 = err1
self.save(epoch, f'{self.cfgs.save_dir}/best_checkpoint_{str(epoch).zfill(3)}epoch.pth')
self.log(f'[RESULT]: Valid Epoch: {epoch}\t top-1 err: {err1:6.4f}\t top-5 err: {err5:6.4f}')
self.writer.add_scalars('top-1 Error Rate', {'valid': err1}, epoch)
self.writer.add_scalars('top-5 Error Rate', {'valid': err5}, epoch)
# adjust learning rate if necessary
self.scheduler.step(metrics=err1)
def train(self, epoch, train_loader):
"""
train the model for an epoch
Args:
epoch (int): current epoch
train_loader (torch.utils.data.DataLoader): train data loader
Returns:
top1.avg (float): top-1 error rate
top5.avg (float): top-5 error rate
"""
losses = AverageMeter() # ':.4e'
top1 = AverageMeter() # ':6.4f'
top5 = AverageMeter() # ':6.4f'
self.model.train()
with tqdm(train_loader) as pbar:
pbar.set_description('Train Epoch {}'.format(epoch))
for step, (input_, target) in enumerate(train_loader):
# move data to device
input_ = torch.tensor(input_, device=self.device, dtype=torch.float32)
target = torch.tensor(target, device=self.device, dtype=torch.long)
# forward and compute loss
output = self.model(input_)
loss = self.criterion(output, target)
# backward and update params
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# record loss and compute accuracies
err1, err5 = errors(output, target, topk=(1, 5))
losses.update(loss.item(), input_.size(0))
top1.update(err1[0], input_.size(0))
top5.update(err5[0], input_.size(0))
# show info in pbar
postfix = OrderedDict({
'batch_loss': f'{losses.val:6.4f}', 'running_loss': f'{losses.avg:6.4f}',
'batch_err@1': f'{top1.val:6.4f}', 'batch_err@5': f'{top5.val:6.4f}'
})
pbar.set_postfix(ordered_dict=postfix)
pbar.update()
# visualization with TensorBoard
total_iter = (epoch - 1) * len(train_loader) + step + 1
self.writer.add_scalar('training_loss', losses.val, total_iter)
return top1.avg, top5.avg
def validate(self, epoch, valid_loader):
"""
validate the model on validation set using ten-crop strategy
Args:
epoch (int): current epoch
valid_loader (torch.utils.data.DataLoader): validatioin data loader
Returns:
top1.avg: (float) top-1 error rate
top5.avg: (float) top-5 error rate
"""
losses = AverageMeter() # ':.4e'
top1 = AverageMeter() # ':6.4f'
top5 = AverageMeter() # ':6.4f'
self.model.eval()
with tqdm(valid_loader) as pbar:
pbar.set_description('Valid Epoch {}'.format(epoch))
for i, (input_, target) in enumerate(valid_loader):
# convert 5-d multi-crop format to 4-d for input
bs, num_crops, c, h, w = input_.size()
input_ = input_.view(-1, c, h, w)
# move data to GPU
input_ = torch.tensor(input_, device=self.device, dtype=torch.float32)
target = torch.tensor(target, device=self.device, dtype=torch.long)
with torch.no_grad():
# compute output and loss
output = self.model(input_)
output = output.view(bs, num_crops, -1).mean(1) # average the multi-crop result
loss = self.criterion(output, target)
# record loss and compute accuracies
err1, err5 = errors(output, target, topk=(1, 5))
losses.update(loss.item(), input_.size(0))
top1.update(err1[0], input_.size(0))
top5.update(err5[0], input_.size(0))
# show info in pbar
postfix = OrderedDict({
'batch_loss': f'{losses.val:6.4f}', 'running_loss': f'{losses.avg:6.4f}',
'batch_err@1': f'{top1.val:6.4f}', 'batch_err@5': f'{top5.val:6.4f}'
})
pbar.set_postfix(ordered_dict=postfix)
pbar.update()
return top1.avg, top5.avg
def save(self, epoch, path):
self.model.eval()
torch.save({
'model': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'best_err1': self.best_err1,
'epoch': epoch
}, path)
def load(self, path):
checkpoint = torch.load(path, map_location=self.device)
# whether the checkpoint contains other training info
if isinstance(checkpoint, dict):
self.model.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.scheduler.load_state_dict(checkpoint['scheduler'])
self.best_err1 = checkpoint['best_err1']
self.start_epoch = checkpoint['epoch'] + 1
else:
self.model.load_state_dict(checkpoint)
def log(self, msg):
if self.cfgs.verbose:
print(msg)
log_path = os.path.join(self.cfgs.log_dir, 'log.txt')
with open(log_path, 'a+') as logger:
logger.write(f'{msg}\n')
if __name__ == '__main__':
# for training alexnet from a checkpoint:
# $ python -u train.py --work-dir ./experiments/alexnet
# --resume ./experiments/alexnet/checkpoints/last_checkpoint.pth
parser = ArgumentParser(description='Train ConvNets on ILSVRC 2012 in PyTorch')
parser.add_argument('--work-dir', required=True, type=str)
parser.add_argument('--resume', type=str, default=None)
args = parser.parse_args()
# get experiment settings
with open(os.path.join(args.work_dir, 'config.yaml')) as f:
cfgs = yaml.load(f, Loader=yaml.FullLoader)
cfgs = EasyDict(cfgs)
# set paths
cfgs.save_dir = os.path.join(args.work_dir, cfgs.save_dir)
cfgs.log_dir = os.path.join(args.work_dir, cfgs.log_dir)
cfgs.resume = args.resume
# get model
model = get_model(cfgs)
# get data
train_set = ILSVRC2012Dataset(cfgs.train_root, transform=get_train_transforms(cfgs.scale_size, cfgs.crop_size))
valid_set = ILSVRC2012Dataset(cfgs.valid_root, transform=get_valid_transforms(cfgs.scale_size, cfgs.crop_size))
train_loader = DataLoader(train_set, batch_size=cfgs.batch_size, shuffle=True, num_workers=cfgs.workers)
valid_loader = DataLoader(valid_set, batch_size=cfgs.batch_size, shuffle=False, num_workers=cfgs.workers)
# train
trainer = Trainer(cfgs, model)
trainer.fit(train_loader, valid_loader)