-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHAN_DNS_time.py
246 lines (205 loc) · 12.7 KB
/
HAN_DNS_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
USE_CUDA = torch.cuda.is_available() and True
device = torch.device("cuda" if USE_CUDA else "cpu")
from Attentions import ScaledDotSelfAttention, TransformerLayer, TimeEmbedding
class SenSelfAttNet(nn.Module):
def __init__(self, model_args):
super(SenSelfAttNet, self).__init__()
self.linear = nn.Linear(64, model_args.hidden_size)
self.self_attn = ScaledDotSelfAttention(model_args)
self.fc = nn.Linear(model_args.senK+2, 1)
self.fc_2 = nn.Sequential(nn.Linear(model_args.hidden_size, model_args.news_dim))
def forward(self, sen_embed, can_embed, user_embed):
# 计算attention score sen_embed:batch,senK,dim can_embed:batch,dim user_embed: batch,dim
can_embed = can_embed.unsqueeze(1)
user_embed = user_embed.unsqueeze(1)
self_attn_input = torch.cat((sen_embed, can_embed, user_embed), 1) # 这里拼接的第1维,可以拼接第2维
self_attn_input = self.linear(self_attn_input) # batch, senK, 128
attn_output = self.self_attn(self_attn_input).permute(0, 2, 1) # batch, 128, senK
attn_output = self.fc(attn_output).permute(0, 2, 1) # batch, 1, 64
attn_output = self.fc_2(attn_output) # batch, 1, 768 -> batch, 1, 64
return attn_output
class EleSelfAttNet(nn.Module):
def __init__(self, model_args):
super(EleSelfAttNet, self).__init__()
self.linear = nn.Linear(64 * 2, model_args.hidden_size)
self.attention = ScaledDotSelfAttention(model_args)
self.fc = nn.Linear(5, 1)
self.fc_2 = nn.Sequential(nn.Linear(model_args.hidden_size, model_args.news_dim))
def forward(self, hist_ele_embed, can_ele_embed):
# hist: batch, 5, dim, can: batch,5,dim
input = torch.cat([hist_ele_embed, can_ele_embed], dim=2) # batch,5,dim*2
input = self.linear(input) # batch,5,hidden_size
output = self.attention(input) # batch,5,hidden_size
output = output.permute(0, 2, 1) # batch,hidden_size,5
vec = self.fc(output).permute(0, 2, 1) # batch, hidden_size, 1
vec = self.fc_2(vec) # batch, 1, hidden_size -> batch, 1, dim
return vec
class NewsSelfAttNet(nn.Module):
def __init__(self, model_args):
super(NewsSelfAttNet, self).__init__()
self.args = model_args
self.attn = TransformerLayer(model_args)
self.time_embed = TimeEmbedding(model_args)
self.linear_2 = nn.Linear(model_args.news_dim * 3, model_args.hidden_size)
self.linear_3 = nn.Linear(model_args.news_dim * 5, model_args.hidden_size)
if model_args.interval_or_abs == 'abs':
self.w_a = nn.Linear(model_args.news_dim * 3 + model_args.hidden_size * 1, model_args.hidden_size)
self.w_b = nn.Linear(model_args.L + 1, model_args.L)
elif model_args.interval_or_abs == 'interval':
self.w_3 = nn.Linear(model_args.news_dim * 6 + model_args.hidden_size * 1, model_args.hidden_size)
else:
self.w_1 = nn.Linear(model_args.news_dim * 6 + model_args.hidden_size * 3, model_args.hidden_size)
def forward(self, hist_embed, can_embed, user_embed, history_time, candidate_time, turn='hist'):
"""his_embed: batch, L, dim*3, can_embed:batch,dim*3, user_embed: batch,dim"""
# 相对时间差V3
if history_time is not None and candidate_time is not None:
absolute_embedding, interval_embedding = self.time_embed(history_time, candidate_time) # batch, L, hidden_size
if self.args.interval_or_abs == 'interval':
# print('===> user time interval')
hist_embed = torch.cat((hist_embed, interval_embedding), 2) # batch, L,dim*3+hidden_size
can_embed = can_embed.unsqueeze(1).repeat(1, self.args.L, 1) # batch, L, dim*3
input = torch.cat([hist_embed, can_embed, ], dim=2)
input = self.w_3(input) # batch, L, hidden_size
logits = self.attn(input) # batch, L, dim
# 绝对时间V2
elif self.args.interval_or_abs == 'abs':
# print('===> user absolute time stamp')
can_embed = torch.cat([can_embed, absolute_embedding[:, -1, :]], dim=1).unsqueeze(1) # batch, 1, dim*3 + hidden_size
hist_embed = torch.cat([hist_embed, absolute_embedding[:, :-1, :]], dim=2) # batch, L, dim*3+hidden_size
input = torch.cat([hist_embed, can_embed], dim=1) # batch, L+1, dim*3+hidden_size
input = self.w_a(input)
logits = self.attn(input) # batch, L+1, hidden_size
logits = self.w_b(logits.permute(0, 2, 1)).permute(0, 2, 1)
else:
# print('===> user time interval and absolute time stamp')
hist_embed = torch.cat((hist_embed, absolute_embedding[:, :-1, :], interval_embedding), 2) # batch, L,dim*3+hidden_size*2
can_embed = torch.cat([can_embed, absolute_embedding[:, -1, :]], dim=1).unsqueeze(1) # batch, 1, dim*3 + hidden_size
can_embed = can_embed.repeat(1, self.args.L, 1) # batch, L, dim*3 + hidden_size
input = torch.cat([hist_embed, can_embed], dim=2) # batch, L, (dim*3+hidden_size*2)2
input = self.w_1(input) # batch, L, hidden_size
logits = self.attn(input) # batch, L, dim
return logits.unsqueeze(1) # batch, 1, L, dim
else:
if turn == 'candidate': # q: batch T d2
input = torch.cat([hist_embed, can_embed, user_embed], dim=-1) # batch T 64*3
input = self.linear_2(input)
logits = self.attn(input)
elif turn == 'target':
input = torch.cat([hist_embed, can_embed, user_embed], dim=-1) # batch 64*5
input = self.linear_3(input)
logits = self.attn(input)
else:
pass
return logits
class TransLayerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([TransformerLayer(config) for _ in range(config.layer_num)])
def forward(self, hidden_states,):
for i, layer_module in enumerate(self.layer):
hidden_states = layer_module(hidden_states)
return hidden_states
class D_HAN(nn.Module):
def __init__(self, model_args, num_users, num_items):
super(D_HAN, self).__init__()
self.args = model_args
self.num_items = num_items
self.L = self.args.L
self.num_negs = self.args.neg_samples
self.user_dim = self.args.user_dim
self.news_dim = self.args.news_dim
self.element_dim = self.args.element_dim
# self.kernel_num = self.args.kernel_num
# self.kernel_sizes = self.args.kernel_sizes # 卷积核高度
# self.layer_num = self.args.layer_num # cnn层数
# self.time_factor = self.args.time_factor
self.user_embeddings = nn.Embedding(num_users, self.user_dim)
self.user_embeddings.weight.data.normal_(mean=0.0, std=0.02) # 1.0 / self.user_embeddings.embedding_dim
self.item_embeddings = nn.Embedding(num_items, self.news_dim)
self.item_embeddings.weight.data.normal_(mean=0.0, std=0.02) # 1.0 / self.item_embeddings.embedding_dim
self.senatt_net = SenSelfAttNet(model_args).to(device)
self.eleatt_net = EleSelfAttNet(model_args).to(device)
self.newsatt_net = NewsSelfAttNet(model_args).to(device)
self.trans = TransLayerEncoder(model_args)
self.fc = nn.Sequential(
nn.Linear(model_args.hidden_size * model_args.L + model_args.news_dim * 4, self.news_dim * 5),
nn.ReLU(inplace=True),
nn.Linear(self.news_dim * 5, int(self.news_dim * 2.5)),
nn.ReLU(inplace=True),
nn.Linear(int(self.news_dim * 2.5), 1))
from utils import N
self.W_x = nn.Linear(N, N)
def forward(self, x, x_element, x_id, \
can_embed, can_element, can_id, \
user_var, history_time, candidate_time,
train,
can_id_list=None, can_embedding=None, can_ele_embedding=None,):
# user ID embedding, news ID embedding, candidate news ID embedding
user_emb = self.user_embeddings(user_var)
item_embs = self.item_embeddings(x_id) # batch, L, 64
can_id_emb = self.item_embeddings(can_id).squeeze(1) # batch, 64
# 1. history news sentence representation,inject user,candidate news information
# hist_embed: batch, L, senK, dim
news_matrix = [self.senatt_net(x[:, i, :, :], can_embed, user_emb) for i in range(x.size(1))]
news_matrix = torch.stack(news_matrix, 2).squeeze(1) # batch, L, 64
# 2. history news element representation,hist_element: batch, L, 5, dim, can_element: batch, 5, dim
news_element_matrix = [self.eleatt_net(x_element[:, i, :, :], can_element) for i in range(x_element.size(1))]
news_element_matrix = torch.stack(news_element_matrix, 2).squeeze(1) # batch, L, 64
# 3. history news representation,including:text representation,id representation,element representation
news_matrix = torch.cat((news_matrix, item_embs, news_element_matrix), 2) # batch, L, 192
# a. candidate news element representation
can_element = torch.mean(can_element, dim=1)
# b. candidate news representation, including: text representation, id representation and element representation
can_embed = torch.cat((can_embed, can_id_emb, can_element), 1) # batch, 192
# c. history news representation and candidate news rep, attention, with user rep, and time interval info
# batch,1, L, 128
news_matrix_1 = self.newsatt_net(news_matrix, can_embed, user_emb, history_time, candidate_time)
news_matrix = self.trans(news_matrix_1)
news_vector = news_matrix.contiguous().view(news_matrix.size(0), -1)
fc_input = torch.cat((news_vector, can_embed, user_emb), 1)
output = self.fc(fc_input)
if train:
# three kinds of negative sampling are tested, and the 3rd is adopted
# compute the similarity between history and candidate representation,
# and then select negative samples according to this similarity score
# 1st
# can_id_embedding = self.item_embeddings(can_id_list) # batch, 1000, 64
# id_ele_news_user_embedding = torch.cat([can_embedding, can_id_embedding, can_ele_embedding], dim=-1) # batch, T, 64*3
# can_embedding = self.newsatt_net(id_ele_news_user_embedding, can_id_embedding, user_emb, hitory_time, cadidate_time) # batch L
# t1 = torch.matmul(news_matrix.squeeze(), can_embedding.permute(0, 2, 1)).squeeze() # batch L T
# t1 = self.W_a(t1.permute(0, 2, 1)).permute(0, 2, 1).squeeze() # batch T
# t1 = nn.Softmax(dim=1)(t1)
# 2nd
# X1 = news_matrix_1.squeeze() # news attention 的输出
# X1 = news_matrix.squeeze() # trans的输出
# can_id_embedding = self.item_embeddings(can_id_list) # batch, 1000, 64
# X1 = self.W_1(X1.permute(0, 2, 1)).permute(0, 2, 1) # batch 1, d
# X2 = self.newsatt_net(can_embedding, can_ele_embedding, can_id_embedding, None, None, turn='candidate') # batch T d
# t1 = torch.matmul(X1, X2.permute(0, 2, 1)).squeeze() # batch T
# t1 = self.W_2(t1) # batch T
# t1 = nn.Softmax(dim=-1)(t1)
# 3rd: the candidates do not need to be similar to history, but to target(label)
target_id_embedding = can_id_emb # batch, 64 can_id_emb
can_id_embedding = self.item_embeddings(can_id_list) # batch, 1000, 64
X1 = self.newsatt_net(can_embed, can_element, target_id_embedding, None, None, turn='target').unsqueeze(1) # batch 1 d target rep
X2 = self.newsatt_net(can_embedding, can_ele_embedding, can_id_embedding, None, None, turn='candidate') # batch T d
t1 = torch.matmul(X1, X2.permute(0, 2, 1)).squeeze() # batch T
t1 = self.W_x(t1)
t1 = nn.Softmax(dim=-1)(t1)
i1 = torch.argmax(t1, dim=-1) # batch, 1
X2_t = X2[range(i1.size(0)), i1]
loss = torch.mul(X1, X2_t) # batch
loss = torch.sigmoid(loss)
loss = torch.clamp(loss, min=1e-10, max=1-1e-10)
loss = torch.log(loss)
loss = -torch.mean(loss)
values, indices = t1.topk(self.args.neg_samples, dim=1, largest=True, sorted=True)
indices = torch.gather(can_id_list, dim=1, index=indices)
# select negative samples
return output, indices, loss
else:
return output