-
Notifications
You must be signed in to change notification settings - Fork 1
/
ADEData.py
72 lines (60 loc) · 2.8 KB
/
ADEData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Small library that points to the flowers data set.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from dataset import Dataset
import numpy as np
#WEIGHTS = np.array([0.5, 4, 4, 16, 8, 4, 1, 8, 2, 16, 4, 4, 4, 4, 2, 2, 16, 1, 4, 2, 8, 2, 1, 2, 2, 1, 2, 4, 1, 4, 8, 8, 1, 2])
IMAGE_SIZE = 256
# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 151
WEIGHTS = np.ones((NUM_CLASSES,))
#NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 2432
#NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 200
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000
class ADEData(Dataset):
"""Flowers data set."""
def __init__(self, subset):
super(ADEData, self).__init__('ADEChallenge', subset)
# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
self.IMAGE_SIZE = IMAGE_SIZE
# Global constants describing the CIFAR-10 data set.
self.NUM_CLASSES = NUM_CLASSES
self.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
self.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
def num_classes(self):
"""Returns the number of classes in the data set."""
return self.NUM_CLASSES
def num_examples_per_epoch(self):
"""Returns the number of examples in the data subset."""
if self.subset == 'train':
return self.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
if self.subset == 'validation':
return self.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
def download_message(self):
"""Instruction to download and extract the tarball from Flowers website."""
#print('Failed to find any Flowers %s files'% self.subset)
#print('')
#print('If you have already downloaded and processed the data, then make '
# 'sure to set --data_dir to point to the directory containing the '
# 'location of the sharded TFRecords.\n')
#print('Please see README.md for instructions on how to build '
#'the flowers dataset using download_and_preprocess_flowers.\n')