-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
118 lines (96 loc) · 3.84 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import time
from collections import defaultdict
import torch
from torch.utils.data.dataloader import DataLoader
class EarlyStopper:
def __init__(self, patience=5, delta=0.1):
self.patience = patience
self.delta = delta
self.counter = 0
self.best_metric = float('inf')
self.early_stop = False
self.batches_count = 0
def step(self, metric):
if metric < self.best_metric - self.delta:
self.best_metric = metric
self.counter = 0
else:
self.counter += 1
def should_stop(self):
return self.counter >= self.patience
class Trainer:
def __init__(self, config, model, train_dataset):
self.config = config
self.model = model
self.optimizer = None
self.train_dataset = train_dataset
self.callbacks = defaultdict(list)
self.num_datapoints = len(train_dataset)
# determine the device we'll train on
if config.device == 'auto':
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
self.device = config.device
self.model = self.model.to(self.device)
print("running on device", self.device)
# variables that will be assigned to trainer class later for logging and etc
self.iter_num = 0
self.iter_time = 0.0
self.iter_dt = 0.0
def add_callback(self, onevent: str, callback):
self.callbacks[onevent].append(callback)
def set_callback(self, onevent: str, callback):
self.callbacks[onevent] = [callback]
def trigger_callbacks(self, onevent: str):
for callback in self.callbacks.get(onevent, []):
callback(self)
def run(self):
model, config = self.model, self.config
# setup the optimizer
self.optimizer = model.configure_optimizers(config)
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
step_size=200,
gamma=0.5)
self.early_stopper = EarlyStopper(patience=5, delta=0.1)
# setup the dataloader
train_loader = DataLoader(
self.train_dataset,
sampler=torch.utils.data.RandomSampler(self.train_dataset, replacement=True, num_samples=int(1e10)),
shuffle=False,
pin_memory=True,
batch_size=config.batch_size,
num_workers=config.num_workers,
)
model.train()
self.iter_num = 0
self.iter_time = time.time()
data_iter = iter(train_loader)
while True:
# fetch the next batch (x, y) and re-init iterator if needed
try:
batch = next(data_iter)
except StopIteration:
data_iter = iter(train_loader)
batch = next(data_iter)
batch = [t.to(self.device) for t in batch]
x, y = batch
# forward the model
logits, self.loss = model(x, y)
# backprop and update the parameters
model.zero_grad(set_to_none=True)
self.loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm_clip)
self.optimizer.step()
self.early_stopper.batches_count += 1
self.trigger_callbacks('on_batch_end')
self.iter_num += 1
tnow = time.time()
self.iter_dt = tnow - self.iter_time
self.iter_time = tnow
# termination conditions
if config.max_iters is not None and self.iter_num >= config.max_iters:
break
if self.early_stopper.batches_count > len(self.train_dataset) / 32:
self.early_stopper.step(self.loss)
if self.early_stopper.should_stop():
break