Follow these steps to setup a VM instance running jupyter on GCP, with TensorFlow and other dependencies installed.
Create environment variables:
export HOST_NAME=`whoami`-0
export PROJECT=[your GCP project id]
export IMAGE_PROJECT=deeplearning-platform-release
export ZONE=[your preferred zone, e.g. europe-west4-a]
https://cloud.google.com/compute/quotas
export IMAGE_NAME="tf-latest-cu92"
gcloud beta compute instances create ${HOST_NAME} \
--project=${PROJECT} \
--zone=${ZONE} \
--machine-type=n1-standard-4 \
--maintenance-policy=TERMINATE \
--accelerator=type=nvidia-tesla-p100,count=1 \
--metadata='install-nvidia-driver=True' \
--image-family=${IMAGE_NAME} \
--image-project=${IMAGE_PROJECT} \
--boot-disk-size=200GB \
--boot-disk-type=pd-standard \
--boot-disk-device-name=${HOST_NAME} \
--scopes=https://www.googleapis.com/auth/cloud-platform
export IMAGE_NAME="tf-latest-cpu"
gcloud beta compute instances create ${HOST_NAME} \
--project=${PROJECT} \
--zone=${ZONE} \
--machine-type=n1-standard-4 \
--maintenance-policy=TERMINATE \
--image-family=${IMAGE_NAME} \
--image-project=${IMAGE_PROJECT} \
--boot-disk-size=200GB \
--boot-disk-type=pd-standard \
--boot-disk-device-name=${HOST_NAME} \
--scopes=https://www.googleapis.com/auth/cloud-platform
gcloud compute ssh $HOST_NAME --project=$PROJECT --zone=$ZONE -- -L 8080:localhost:8080
Go to http://localhost:8080
Open a Terminal via the Launcher