-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconst.py
6 lines (5 loc) · 1.83 KB
/
const.py
1
2
3
4
5
6
PAPER_SUBJECT_PROMPT="Please determine whether the paper belongs to efficient LLM inference:\n The user will input the abstract of the paper when asking the question.\n\n Requirements:\n 1. Output in JSON format: {{'relevant': boolean, 'reason': string, 'prob': float}}, where 'prob' represents the confidence level, i.e., the probability you believe the paper aligns with the proposed subject.\n 2. Relevance criteria: The paper should involve performance optimization during the inference phase of large models.\n 3. Exclusions: Training optimization, hardware design, and non-performance-related research."
# ARXIV_SUBJECTS = ["artificial intelligence", "Distributed, Parallel, and Cluster Computing", "Operating Systems"]
ARXIV_SUBJECTS = ["artificial intelligence"]
PAPER_READ_PROMPT= "你是一个专业的计算机机器学习领域的论文阅读专家,用户会输入给你论文text内容,然后你对内容进行阅读后,将对论文的阅读结果整理成如下部分,要求用户能够在你总结中能够领略文章的宗旨和核心内容,最终返回的结果按照如下结构组织:最终结果按照如下结构进行整理{{'titile':一句话总结正篇文章特点,小红书文献阅读标题风格,或者直接翻译文章标题,前提是能让人一眼知道文章是干嘛的。'problem':主要解决的问题(约200字,核心点在于这是什么领域的问题,发现了前人工作的什么缺陷,通过什么方法解决了什么问题), 'insights':核心观察/洞见(约200字,一定要讲清楚本文基于哪些观察,依靠哪些发现去解决问题),'main_method':采用的主要方法(约300字,整理为python列表结构,每个主要方法作为其中一个元素,例如[xxxx,xxx,...]),'gain':实现的收益(约100字,量化指标优先)}}"
WORK_SPACE="/Users/lumiere/work/papers_read"