-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsingle_gpu.py
45 lines (36 loc) · 1.52 KB
/
single_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
os.environ["CUDA_VISIBLE_DEVICES"]="2,3" # 必须在`import torch`语句之前设置才能生效
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import Net
from torchvision import datasets, transforms
device = torch.device('cuda')
batch_size = 64
#train_dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download = True)
# test_dataset = datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor(), download = True)
train_dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor())
test_dataset = datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
model = Net()
model = model.to(device) # 默认会使用第一个GPU
optimizer = optim.SGD(model.parameters(), lr=0.1)
# training!
tb_writer = SummaryWriter('single-gpu-training')
for i, (inputs, labels) in enumerate(train_loader):
# forward
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs, labels=labels)
loss = outputs[0] # 对应模型定义中,模型返回始终是tuple
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# log
if i % 10 == 0:
tb_writer.add_scalar('loss', loss.item(), i)
tb_writer.close()