-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo.py
240 lines (200 loc) · 7.98 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
'''
Inference code for ReferFormer, on Ref-Youtube-VOS
Modified from DETR (https://github.com/facebookresearch/detr)
'''
import argparse
import json
import random
import sys
import time
from pathlib import Path
import numpy as np
import torch
import util.misc as utils
from models import build_model
import torchvision.transforms as T
import matplotlib.pyplot as plt
import os
import cv2
from PIL import Image, ImageDraw
import math
import torch.nn.functional as F
import json
import opts
from tqdm import tqdm
import multiprocessing as mp
import threading
import glob
from tools.colormap import colormap
# colormap
color_list = colormap()
color_list = color_list.astype('uint8').tolist()
def main(args):
args.masks = True
args.batch_size == 1
print("Inference only supports for batch size = 1")
global transform
transform = T.Compose([
T.Resize(args.inf_res),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# save path
output_dir = args.output_dir
save_path_prefix = os.path.join(output_dir)
if not os.path.exists(save_path_prefix):
os.makedirs(save_path_prefix)
global result_dict
result_dict = mp.Manager().dict()
frames = sorted(glob.glob(args.demo_path+'/*'))
sub_processor(0, args, args.demo_exp, frames, save_path_prefix)
result_dict = dict(result_dict)
num_all_frames_gpus = 0
for pid, num_all_frames in result_dict.items():
num_all_frames_gpus += num_all_frames
def sub_processor(pid, args, exp, frames, save_path_prefix):
torch.cuda.set_device(pid)
# model
model, criterion, _ = build_model(args)
device = args.device
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
if pid == 0:
print('number of params:', n_parameters)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
else:
raise ValueError('Please specify the checkpoint for inference.')
# start inference
num_all_frames = 0
model.eval()
sentence_features = []
pseudo_sentence_features = []
video_name = 'demo'
# exp = meta[i]["exp"]
# # exp = 'a dog is with its puppies on the cloth'
# # TODO: temp
# frames = meta[i]["frames"]
# frames = [f'/home/mcg/ReferFormer/demo/frames_{fid}.jpg' for fid in range(1,2)]
video_len = len(frames)
# store images
imgs = []
for t in range(video_len):
frame = frames[t]
img_path = os.path.join(frame)
img = Image.open(img_path).convert('RGB')
origin_w, origin_h = img.size
imgs.append(transform(img)) # list[img]
imgs = torch.stack(imgs, dim=0).to(args.device) # [video_len, 3, h, w]
img_h, img_w = imgs.shape[-2:]
size = torch.as_tensor([int(img_h), int(img_w)]).to(args.device)
target = {"size": size}
with torch.no_grad():
outputs = model([imgs], [exp], [target])
pred_logits = outputs["pred_logits"][0]
pred_boxes = outputs["pred_boxes"][0]
pred_masks = outputs["pred_masks"][0]
pred_ref_points = outputs["reference_points"][0]
text_sentence_features = outputs['sentence_feature']
if args.use_cycle:
pseudo_text_sentence_features = outputs['pseudo_sentence_feature']
# anchor = outputs['negative_anchor']
sentence_features.append(text_sentence_features)
pseudo_sentence_features.append(pseudo_text_sentence_features)
# print(F.pairwise_distance(text_sentence_features, pseudo_text_sentence_features.squeeze(0), p=2))
# print(anchor)
# according to pred_logits, select the query index
pred_scores = pred_logits.sigmoid() # [t, q, k]
pred_score = pred_scores
pred_scores = pred_scores.mean(0) # [q, k]
max_scores, _ = pred_scores.max(-1) # [q,]
# print(max_scores)
_, max_ind = max_scores.max(-1) # [1,]
max_inds = max_ind.repeat(video_len)
pred_masks = pred_masks[range(video_len), max_inds, ...] # [t, h, w]
pred_masks = pred_masks.unsqueeze(0)
pred_masks = F.interpolate(pred_masks, size=(origin_h, origin_w), mode='bilinear', align_corners=False)
if args.save_prob:
pred_masks = pred_masks.sigmoid().squeeze(0).detach().cpu().numpy()
else:
pred_masks = (pred_masks.sigmoid() > args.threshold).squeeze(0).detach().cpu().numpy()
if args.use_score:
pred_score = pred_score[range(video_len), max_inds, 0].unsqueeze(-1).unsqueeze(-1)
pred_masks *= (pred_score > 0.3).cpu().numpy() * pred_masks
# store the video results
all_pred_logits = pred_logits[range(video_len), max_inds].sigmoid().cpu().numpy()
all_pred_boxes = pred_boxes[range(video_len), max_inds]
all_pred_ref_points = pred_ref_points[range(video_len), max_inds]
all_pred_masks = pred_masks
save_path = os.path.join(save_path_prefix)
if not os.path.exists(save_path):
os.makedirs(save_path)
for j in range(video_len):
frame_name = frames[j]
confidence = all_pred_logits[j]
mask = all_pred_masks[j].astype(np.float32)
save_file = os.path.join(save_path, f"{j}" + ".png")
# print(save_file)
if 'pair_logits' in outputs.keys() and args.use_cls:
if outputs['pair_logits'].cpu().numpy() >= 0.5:
print('This is a negative pair, disalignment degree:', outputs['pair_logits'].cpu().numpy().item())
else:
print('This is a positive pair, disalignment degree:', outputs['pair_logits'].cpu().numpy().item())
mask *= 0 if outputs['pair_logits'].cpu().numpy() >= 0.5 else 1
mask = Image.fromarray(mask * 255).convert('L')
mask.save(save_file)
print(f'Results saved to {save_path}')
result_dict[str(pid)] = num_all_frames
# visuaize functions
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b.cpu() * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
# Visualization functions
def draw_reference_points(draw, reference_points, img_size, color):
W, H = img_size
for i, ref_point in enumerate(reference_points):
init_x, init_y = ref_point
x, y = W * init_x, H * init_y
cur_color = color
draw.line((x-10, y, x+10, y), tuple(cur_color), width=4)
draw.line((x, y-10, x, y+10), tuple(cur_color), width=4)
def draw_sample_points(draw, sample_points, img_size, color_list):
alpha = 255
for i, samples in enumerate(sample_points):
for sample in samples:
x, y = sample
cur_color = color_list[i % len(color_list)][::-1]
cur_color += [alpha]
draw.ellipse((x-2, y-2, x+2, y+2),
fill=tuple(cur_color), outline=tuple(cur_color), width=1)
def vis_add_mask(img, mask, color):
origin_img = np.asarray(img.convert('RGB')).copy()
color = np.array(color)
mask = mask.reshape(mask.shape[0], mask.shape[1]).astype('uint8') # np
mask = mask > 0.5
origin_img[mask] = origin_img[mask] * 0.5 + color * 0.5
origin_img = Image.fromarray(origin_img)
return origin_img
if __name__ == '__main__':
parser = argparse.ArgumentParser('ReferFormer inference script', parents=[opts.get_args_parser()])
args = parser.parse_args()
main(args)