Open
Description
I'm testing xarray-spatial against QGIS and seeing that when running hillshade on the same input data, the results by xarray-spatial and GDAL/QGIS are very different. Source code for QGIS hillshade can be found at: https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/gdal/hillshade.py. This needs more research to see how the algorithm was implemented in QGIS to clearly understand the difference between the 2 libraries.
Input data:
array([[ nan, nan, nan, nan, nan, nan],
[704.237 , 242.24084, 429.3324 , 779.8816 , 193.29506, 984.6926 ],
[226.56795, 815.7483 , 290.6041 , 76.49687, 820.89716, 32.27882],
[344.8238 , 256.34998, 806.8326 , 602.0442 , 721.1633 , 496.95636],
[185.43515, 834.10425, 387.0871 , 716.0262 , 49.61273, 752.95483],
[302.4271 , 151.49211, 442.32797, 358.4702 , 659.8187 , 447.1241 ],
[148.04834, 819.2133 , 468.97913, 977.11694, 597.69666, 999.14185],
[268.1575 , 625.96466, 840.26483, 448.28333, 859.2699 , 528.04095]],
dtype=float32)
xarray-spatial hillshade:
array([[ nan, nan, nan, nan, nan, nan],
[ nan, nan, nan, nan, nan, nan],
[ nan, 0.75030494, 0.06941041, 0.90643436, 0.15474272, nan],
[ nan, 0.80836594, 0.72366774, 0.14052185, 0.774778 , nan],
[ nan, 0.93396175, 0.7071851 , 0.42872226, 0.9455124 , nan],
[ nan, 0.85551083, 0.6819584 , 0.46013114, 0.23561102, nan],
[ nan, 0.41484872, 0.3213355 , 0.5821109 , 0.21879822, nan],
[ nan, nan, nan, nan, nan, nan]],
dtype=float32)
QGIS/GDAL hillshade
array([[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[107.84468 , 70.09885 , 0. , 17.661407, 0. , 0. ],
[ 80.06987 , 71.644684, 0. , 0. , 0. , 0. ],
[ 85.574615, 106.36669 , 96.23605 , 28.27108 , 90.29079 , 85.07072 ],
[ 81.44522 , 77.092354, 8.479876, 0. , 0. , 0. ],
[ 62.541145, 2.647696, 0. , 0. , 0. , 6.515689],
[ 74.07955 , 78.71434 , 0. , 84.590744, 34.814816, 44.81609 ]],
dtype=float32)
Metadata
Metadata
Assignees
Type
Projects
Status
🔖 Ready