-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathmain_unet.py
587 lines (408 loc) · 17.8 KB
/
main_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import PIL
from PIL import Image
import matplotlib.pyplot as plt
from libtiff import TIFF
from libtiff import TIFFfile, TIFFimage
from scipy.misc import imresize
import numpy as np
import math
import glob
import cv2
import os
import skimage.io as io
import skimage.transform as trans
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as keras
#%matplotlib inline
def iou(y_true, y_pred, smooth = 100):
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
union = K.sum(y_true,-1) + K.sum(y_pred,-1) - intersection
#sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
iou_acc = (intersection + smooth) / (union + smooth)
return iou_acc
def as_keras_metric(method):
import functools
from keras import backend as K
import tensorflow as tf
@functools.wraps(method)
def wrapper(self, args, **kwargs):
""" Wrapper for turning tensorflow metrics into keras metrics """
value, update_op = method(self, args, **kwargs)
K.get_session().run(tf.local_variables_initializer())
with tf.control_dependencies([update_op]):
value = tf.identity(value)
return value
return wrapper
def tf_mean_iou(y_true, y_pred, num_classes=8):
return tf.metrics.mean_iou(y_true, y_pred, num_classes)
mean_iou = as_keras_metric(tf_mean_iou)
# To read the images in numerical order
import re
numbers = re.compile(r'(\d+)')
def numericalSort(value):
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts
# List of file names of actual Satellite images for traininig
filelist_trainx = sorted(glob.glob('Inter-IIT-CSRE/The-Eye-in-the-Sky-dataset/sat/*.tif'), key=numericalSort)
# List of file names of classified images for traininig
filelist_trainy = sorted(glob.glob('Inter-IIT-CSRE/The-Eye-in-the-Sky-dataset/gt/*.tif'), key=numericalSort)
# List of file names of actual Satellite images for testing
filelist_testx = sorted(glob.glob('Inter-IIT-CSRE/The-Eye-in-the-Sky-test-data/sat_test/*.tif'), key=numericalSort)
# Not useful, messes up with the 4 dimentions of sat images
# Resizing the image to nearest dimensions multipls of 'stride'
def resize(img, stride, n_h, n_w):
#h,l,_ = img.shape
ne_h = (n_h*stride) + stride
ne_w = (n_w*stride) + stride
img_resized = imresize(img, (ne_h,ne_w))
return img_resized
# Padding at the bottem and at the left of images to be able to crop them into 128*128 images for training
def padding(img, w, h, c, crop_size, stride, n_h, n_w):
w_extra = w - ((n_w-1)*stride)
w_toadd = crop_size - w_extra
h_extra = h - ((n_h-1)*stride)
h_toadd = crop_size - h_extra
img_pad = np.zeros(((h+h_toadd), (w+w_toadd), c))
#img_pad[:h, :w,:] = img
#img_pad = img_pad+img
img_pad = np.pad(img, [(0, h_toadd), (0, w_toadd), (0,0)], mode='constant')
return img_pad
# Adding pixels to make the image with shape in multiples of stride
def add_pixals(img, h, w, c, n_h, n_w, crop_size, stride):
w_extra = w - ((n_w-1)*stride)
w_toadd = crop_size - w_extra
h_extra = h - ((n_h-1)*stride)
h_toadd = crop_size - h_extra
img_add = np.zeros(((h+h_toadd), (w+w_toadd), c))
img_add[:h, :w,:] = img
img_add[h:, :w,:] = img[:h_toadd,:, :]
img_add[:h,w:,:] = img[:,:w_toadd,:]
img_add[h:,w:,:] = img[h-h_toadd:h,w-w_toadd:w,:]
return img_add
# Adding pixels to make the image with shape in multiples of stride
def add_pixals(img, h, w, c, n_h, n_w, crop_size, stride):
w_extra = w - ((n_w-1)*stride)
w_toadd = crop_size - w_extra
h_extra = h - ((n_h-1)*stride)
h_toadd = crop_size - h_extra
img_add = np.zeros(((h+h_toadd), (w+w_toadd), c))
img_add[:h, :w,:] = img
img_add[h:, :w,:] = img[:h_toadd,:, :]
img_add[:h,w:,:] = img[:,:w_toadd,:]
img_add[h:,w:,:] = img[h-h_toadd:h,w-w_toadd:w,:]
return img_add
# Slicing the image into crop_size*crop_size crops with a stride of crop_size/2 and makking list out of them
def crops(a, crop_size = 128):
#stride = int(crop_size/2)
stride = 32
croped_images = []
h, w, c = a.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
# Padding using the padding function we wrote
a = padding(a, w, h, c, crop_size, stride, n_h, n_w)
# Resizing as required
##a = resize(a, stride, n_h, n_w)
# Adding pixals as required
#a = add_pixals(a, h, w, c, n_h, n_w, crop_size, stride)
# Slicing the image into 128*128 crops with a stride of 64
for i in range(n_h-1):
for j in range(n_w-1):
crop_x = a[(i*stride):((i*stride)+crop_size), (j*stride):((j*stride)+crop_size), :]
croped_images.append(crop_x)
return croped_images
# Another type of cropping
def new_crops(img, crop_size = 512):
stride = crop_size
croped_images = []
h, w, c = img.shape
n_h = math.ceil(h/stride)
n_w = math.ceil(w/stride)
for i in range(n_h):
if (h - i*crop_size) >= crop_size:
stride = crop_size
elif (h - i*crop_size) <= crop_size:
stride = (crop_size - (w - i*crop_size))
for j in range(n_w):
if (w - i*crop_size) >= crop_size:
stride = crop_size
elif (w - i*crop_size) <= crop_size:
stride = (crop_size - (w - i*crop_size))
crop_x = img[(i*stride):((i*stride)+crop_size), (j*stride):((j*stride)+crop_size), :]
croped_images.append(crop_x)
return croped_images
# Reading, padding, cropping and making array of all the cropped images of all the trainig sat images
trainx_list = []
for fname in filelist_trainx[:13]:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
# Padding as required and cropping
crops_list = crops(image)
#print(len(crops_list))
trainx_list = trainx_list + crops_list
# Array of all the cropped Training sat Images
trainx = np.asarray(trainx_list)
# Reading, padding, cropping and making array of all the cropped images of all the trainig gt images
trainy_list = []
for fname in filelist_trainy[:13]:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
# Padding as required and cropping
crops_list =crops(image)
trainy_list = trainy_list + crops_list
# Array of all the cropped Training gt Images
trainy = np.asarray(trainy_list)
# Reading, padding, cropping and making array of all the cropped images of all the testing sat images
testx_list = []
#for fname in filelist_trainx[13]:
# Reading the image
tif = TIFF.open(filelist_trainx[13])
image = tif.read_image()
# Padding as required and cropping
crops_list = crops(image)
testx_list = testx_list + crops_list
# Array of all the cropped Testing sat Images
testx = np.asarray(testx_list)
# Reading, padding, cropping and making array of all the cropped images of all the testing sat images
testy_list = []
#for fname in filelist_trainx[13]:
# Reading the image
tif = TIFF.open(filelist_trainy[13])
image = tif.read_image()
# Padding as required and cropping
crops_list = crops(image)
testy_list = testy_list + crops_list
# Array of all the cropped Testing sat Images
testy = np.asarray(testy_list)
# Making array of all the training sat images as it is without any cropping
xtrain_list = []
for fname in filelist_trainx:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
crop_size = 128
stride = 64
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = padding(image, w, h, c, crop_size, stride, n_h, n_w)
xtrain_list.append(image)
x_train = np.asarray(xtrain_list)
tif = TIFF.open('Inter-IIT-CSRE/The-Eye-in-the-Sky-dataset/sat/14.tif')
image = tif.read_image()
crop_size = 128
stride = 64
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = padding(image, w, h, c, crop_size, stride, n_h, n_w)
x_train = image
# Making array of all the training gt images as it is without any cropping
ytrain_list = []
for fname in filelist_trainy:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
crop_size = 128
stride = 64
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = padding(image, w, h, c, crop_size, stride, n_h, n_w)
ytrain_list.append(image)
y_train = np.asarray(ytrain_list)
tif = TIFF.open('Inter-IIT-CSRE/The-Eye-in-the-Sky-dataset/gt/14.tif')
image = tif.read_image()
crop_size = 128
stride = 64
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = padding(image, w, h, c, crop_size, stride, n_h, n_w)
y_train = image
def unet(shape = (None,None,4)):
# Left side of the U-Net
inputs = Input(shape)
# in_shape = inputs.shape
# print(in_shape)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(inputs)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv1)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv2)
conv2 = BatchNormalization()(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv3)
conv3 = BatchNormalization()(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv4)
conv4 = BatchNormalization()(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
# Bottom of the U-Net
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv5)
conv5 = BatchNormalization()(conv5)
drop5 = Dropout(0.5)(conv5)
# Upsampling Starts, right side of the U-Net
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(drop5))
merge6 = concatenate([drop4,up6], axis = 3)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv6)
conv6 = BatchNormalization()(conv6)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv6))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv7)
conv7 = BatchNormalization()(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv1,up9], axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv9)
conv9 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv9)
conv9 = BatchNormalization()(conv9)
# Output layer of the U-Net with a softmax activation
conv10 = Conv2D(9, 1, activation = 'softmax')(conv9)
model = Model(input = inputs, output = conv10)
model.compile(optimizer = Adam(lr = 0.0001), loss = 'categorical_crossentropy', metrics = ['accuracy'])
model.summary()
#filelist_modelweights = sorted(glob.glob('*.h5'), key=numericalSort)
#if 'model_nocropping.h5' in filelist_modelweights:
# model.load_weights('model_nocropping.h5')
##model.load_weights("model_onehot.h5")
return model
model = unet()
color_dict = {0: (0, 0, 0),
1: (0, 125, 0),
2: (150, 80, 0),
3: (255, 255, 0),
4: (100, 100, 100),
5: (0, 255, 0),
6: (0, 0, 150),
7: (150, 150, 255),
8: (255, 255, 255)}
def rgb_to_onehot(rgb_arr, color_dict):
num_classes = len(color_dict)
shape = rgb_arr.shape[:2]+(num_classes,)
#print(shape)
arr = np.zeros( shape, dtype=np.int8 )
for i, cls in enumerate(color_dict):
arr[:,:,i] = np.all(rgb_arr.reshape( (-1,3) ) == color_dict[i], axis=1).reshape(shape[:2])
return arr
def onehot_to_rgb(onehot, color_dict):
single_layer = np.argmax(onehot, axis=-1)
output = np.zeros( onehot.shape[:2]+(3,) )
for k in color_dict.keys():
output[single_layer==k] = color_dict[k]
return np.uint8(output)
# Convert trainy and testy into one hot encode
trainy_hot = []
for i in range(trainy.shape[0]):
hot_img = rgb_to_onehot(trainy[i], color_dict)
trainy_hot.append(hot_img)
trainy_hot = np.asarray(trainy_hot)
testy_hot = []
for i in range(testy.shape[0]):
hot_img = rgb_to_onehot(testy[i], color_dict)
testy_hot.append(hot_img)
testy_hot = np.asarray(testy_hot)
'''#trainx = trainx/np.max(trainx)
trainy = trainy/np.max(trainy)
#testx = testx/np.max(testx)
testy = testy/np.max(testy)
# Data Augmentation
datagen_args = dict(rotation_range=45.,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
vertical_flip=True,
fill_mode='reflect')
x_datagen = ImageDataGenerator(**datagen_args)
y_datagen = ImageDataGenerator(**datagen_args)
seed = 1
batch_size = 16
x_datagen.fit(trainx, augment=True, seed = seed)
y_datagen.fit(trainy, augment=True, seed = seed)
x_generator = x_datagen.flow(trainx, batch_size = 16, seed=seed)
y_generator = y_datagen.flow(trainy, batch_size = 16, seed=seed)
train_generator = zip(x_generator, y_generator)
X_datagen_val = ImageDataGenerator()
Y_datagen_val = ImageDataGenerator()
X_datagen_val.fit(testx, augment=True, seed=seed)
Y_datagen_val.fit(testy, augment=True, seed=seed)
X_test_augmented = X_datagen_val.flow(testx, batch_size=batch_size, seed=seed)
Y_test_augmented = Y_datagen_val.flow(testy, batch_size=batch_size, seed=seed)
test_generator = zip(X_test_augmented, Y_test_augmented)
model.fit_generator(train_generator, validation_data=test_generator, validation_steps=batch_size/2, epochs = 10, steps_per_epoch=len(x_generator))
model.save("model_augment.h5")
'''
#trainx = trainx/np.max(trainx)
#trainy = trainy/np.max(trainy)
#testx = testx/np.max(testx)
#testy = testy/np.max(testy)
history = model.fit(trainx, trainy_hot, epochs=20, validation_data = (testx, testy_hot),batch_size=64, verbose=1)
model.save("model_onehot.h5")
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.savefig('acc_plot.png')
plt.show()
plt.close()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.savefig('loss_plot.png')
plt.show()
plt.close()
#epochs = 20
#for e in range(epochs):
# print("epoch %d" % e)
# #for X_train, Y_train in zip(x_train, y_train): # these are chunks of ~10k pictures
# h,w,c = x_train.shape
# X_train = np.reshape(x_train,(1,h,w,c))
# h,w,c = y_train.shape
# Y_train = np.reshape(y_train,(1,h,w,c))
# model.fit(X_train, Y_train, batch_size=1, nb_epoch=1)
# model.save("model_nocropping.h5")
#print(X_train.shape, Y_train.shape)
#model.save("model_nocropping.h5")
#epochs = 10
#for e in range(epochs):
# print("epoch %d" % e)
# for X_train, Y_train in zip(x_train, y_train): # these are chunks of ~10k pictures
# h,w,c = X_train.shape
# X_train = np.reshape(X_train,(1,h,w,c))
# h,w,c = Y_train.shape
# Y_train = np.reshape(Y_train,(1,h,w,c))
# model.fit(X_train, Y_train, batch_size=1, nb_epoch=1)
#print(X_train.shape, Y_train.shape)
#model.save("model_nocropping.h5")
#accuracy = model.evaluate(x=x_test,y=y_test,batch_size=16)
#print("Accuracy: ",accuracy[1])