-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathtest_unet.py
771 lines (473 loc) · 19.9 KB
/
test_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
import PIL
from PIL import Image
import matplotlib.pyplot as plt
from libtiff import TIFF
from libtiff import TIFFfile, TIFFimage
from scipy.misc import imresize
import numpy as np
import glob
import cv2
import os
import math
from sklearn.metrics import confusion_matrix, cohen_kappa_score
from unet import UNet
import skimage.io as io
import skimage.transform as trans
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.preprocessing.image import ImageDataGenerator
from scipy.misc import imsave
from keras import backend as K
from iou import iou
#%matplotlib inline
model = UNet()
# To read the images in numerical order
import re
numbers = re.compile(r'(\d+)')
def numericalSort(value):
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts
# List of file names of actual Satellite images for traininig
filelist_trainx = sorted(glob.glob('Inter-IIT-CSRE/The-Eye-in-the-Sky-dataset/sat/*.tif'), key=numericalSort)
# List of file names of classified images for traininig
filelist_trainy = sorted(glob.glob('Inter-IIT-CSRE/The-Eye-in-the-Sky-dataset/gt/*.tif'), key=numericalSort)
# List of file names of actual Satellite images for testing
filelist_testx = sorted(glob.glob('Inter-IIT-CSRE/The-Eye-in-the-Sky-test-data/sat_test/*.tif'), key=numericalSort)
# Not useful, messes up with the 4 dimentions of sat images
# Resizing the image to nearest dimensions multipls of 'stride'
def resize(img, stride, n_h, n_w):
#h,l,_ = img.shape
ne_h = (n_h*stride) + stride
ne_w = (n_w*stride) + stride
img_resized = imresize(img, (ne_h,ne_w))
return img_resized
# Padding at the bottem and at the left of images to be able to crop them into 128*128 images for training
def padding(img, w, h, c, crop_size, stride, n_h, n_w):
w_extra = w - ((n_w-1)*stride)
w_toadd = crop_size - w_extra
h_extra = h - ((n_h-1)*stride)
h_toadd = crop_size - h_extra
img_pad = np.zeros(((h+h_toadd), (w+w_toadd), c))
#img_pad[:h, :w,:] = img
#img_pad = img_pad+img
img_pad = np.pad(img, [(0, h_toadd), (0, w_toadd), (0,0)], mode='constant')
return img_pad
# Adding pixels to make the image with shape in multiples of stride
def add_pixals(img, h, w, c, n_h, n_w, crop_size, stride):
w_extra = w - ((n_w-1)*stride)
w_toadd = crop_size - w_extra
h_extra = h - ((n_h-1)*stride)
h_toadd = crop_size - h_extra
img_add = np.zeros(((h+h_toadd), (w+w_toadd), c))
img_add[:h, :w,:] = img
img_add[h:, :w,:] = img[:h_toadd,:, :]
img_add[:h,w:,:] = img[:,:w_toadd,:]
img_add[h:,w:,:] = img[h-h_toadd:h,w-w_toadd:w,:]
return img_add
# Slicing the image into crop_size*crop_size crops with a stride of crop_size/2 and makking list out of them
def crops(a, crop_size = 128):
stride = 32
croped_images = []
h, w, c = a.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
# Padding using the padding function we wrote
##a = padding(a, w, h, c, crop_size, stride, n_h, n_w)
# Resizing as required
##a = resize(a, stride, n_h, n_w)
# Adding pixals as required
a = add_pixals(a, h, w, c, n_h, n_w, crop_size, stride)
# Slicing the image into 128*128 crops with a stride of 64
for i in range(n_h-1):
for j in range(n_w-1):
crop_x = a[(i*stride):((i*stride)+crop_size), (j*stride):((j*stride)+crop_size), :]
croped_images.append(crop_x)
return croped_images
# Making array of all the training sat images as it is without any cropping
xtrain_list = []
for fname in filelist_trainx[:13]:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
crop_size = 128
stride = 32
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = padding(image, w, h, c, crop_size, stride, n_h, n_w)
xtrain_list.append(image)
# Making array of all the training gt images as it is without any cropping
ytrain_list = []
for fname in filelist_trainy[:13]:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
crop_size = 128
stride = 32
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = padding(image, w, h, c, crop_size, stride, n_h, n_w)
ytrain_list.append(image)
y_train = np.asarray(ytrain_list)
x_train = np.asarray(xtrain_list)
#del ytrain_list
#del xtrain_list
# Making array of all the training sat images as it is without any cropping
# Reading the image
tif = TIFF.open(filelist_trainx[13])
image = tif.read_image()
crop_size = 128
stride = 32
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = add_pixals(image, h, w, c, n_h, n_w, crop_size, stride)
#x_val = np.reshape(image, (1,h,w,c))
x_val = image
# Making array of all the training gt images as it is without any cropping
# Reading the image
tif = TIFF.open(filelist_trainy[13])
image = tif.read_image()
crop_size = 128
stride = 32
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = add_pixals(image, h, w, c, n_h, n_w, crop_size, stride)
#y_val1 = np.reshape(image, (1,h,w,c))
y_val = image
xtest_list1 = []
for fname in filelist_testx:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
crop_size = 128
stride = 32
h, w, c = image.shape
n_h = int(int(h/stride))
n_w = int(int(w/stride))
image = add_pixals(image, h, w, c, n_h, n_w, crop_size, stride)
xtest_list1.append(image)
# Reading, padding, cropping and making array of all the cropped images of all the trainig sat images
trainx_list = []
for fname in filelist_trainx[:13]:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
# Padding as required and cropping
crops_list = crops(image)
#print(len(crops_list))
trainx_list = trainx_list + crops_list
# Array of all the cropped Training sat Images
trainx = np.asarray(trainx_list)
# Reading, padding, cropping and making array of all the cropped images of all the trainig gt images
trainy_list = []
for fname in filelist_trainy[:13]:
# Reading the image
tif = TIFF.open(fname)
image = tif.read_image()
# Padding as required and cropping
crops_list =crops(image)
trainy_list = trainy_list + crops_list
# Array of all the cropped Training gt Images
trainy = np.asarray(trainy_list)
# Reading, padding, cropping and making array of all the cropped images of all the testing sat images
testx_list = []
#for fname in filelist_trainx[13]:
# Reading the image
tif = TIFF.open(filelist_trainx[13])
image = tif.read_image()
# Padding as required and cropping
crops_list = crops(image)
testx_list = testx_list + crops_list
# Array of all the cropped Testing sat Images
testx = np.asarray(testx_list)
# Reading, padding, cropping and making array of all the cropped images of all the testing sat images
testy_list = []
#for fname in filelist_trainx[13]:
# Reading the image
tif = TIFF.open(filelist_trainy[13])
image = tif.read_image()
# Padding as required and cropping
crops_list = crops(image)
testy_list = testy_list + crops_list
# Array of all the cropped Testing sat Images
testy = np.asarray(testy_list)
color_dict = {0: (0, 0, 0),
1: (0, 125, 0),
2: (150, 80, 0),
3: (255, 255, 0),
4: (100, 100, 100),
5: (0, 255, 0),
6: (0, 0, 150),
7: (150, 150, 255),
8: (255, 255, 255)}
def rgb_to_onehot(rgb_arr, color_dict):
num_classes = len(color_dict)
shape = rgb_arr.shape[:2]+(num_classes,)
print(shape)
arr = np.zeros( shape, dtype=np.int8 )
for i, cls in enumerate(color_dict):
arr[:,:,i] = np.all(rgb_arr.reshape( (-1,3) ) == color_dict[i], axis=1).reshape(shape[:2])
return arr
def onehot_to_rgb(onehot, color_dict):
single_layer = np.argmax(onehot, axis=-1)
output = np.zeros( onehot.shape[:2]+(3,) )
for k in color_dict.keys():
output[single_layer==k] = color_dict[k]
return np.uint8(output)
def testing(model, trainx, trainy, testx, testy, weights_file = "model_oneshot.h5"):
pred_train_all = []
pred_val_all = []
model.load_weights(weights_file)
Y_pred_train = model.predict(trainx)
for k in range(Y_pred_train.shape[0]):
pred_train_all.append(Y_pred_train[k])
Y_gt_train = [rgb_to_onehot(arr, color_dict) for arr in trainy]
Y_pred_val = model.predict(testx)
for k in range(Y_pred_val.shape[0]):
pred_val_all.append(Y_pred_val[k])
Y_gt_val = [rgb_to_onehot(arr, color_dict) for arr in testy]
return pred_train_all, Y_gt_train, pred_val_all, Y_gt_val
def testing_diffsizes(model, trainx, trainy, testx, testy, weights_file = "model_augment.h5"):
pred_train_all = []
pred_test_all = []
model.load_weights(weights_file)
for i in range(len(trainx)):
img = trainx[i]
h,w,c = img.shape
img = np.reshape(img, (1,h,w,c))
Y_pred_train = model.predict(img)
bb,h,w,c = Y_pred_train.shape
Y_pred_train = np.reshape(Y_pred_train, (h,w,c))
pred_train_all.append(Y_pred_train)
# for k in range(Y_pred_train.shape[0]):
# pred_train_all.append(Y_pred_train[k])
Y_gt_train = [rgb_to_onehot(arr, color_dict) for arr in trainy]
img = testx
h,w,c = img.shape
img = np.reshape(img, (1,h,w,c))
Y_pred_test = model.predict(img)
bb,h,w,c = Y_pred_test.shape
Y_pred_test = np.reshape(Y_pred_test, (h,w,c))
pred_test_all.append(Y_pred_test)
# for k in range(Y_pred_val.shape[0]):
# pred_test_all.append(Y_pred_val[k])
Y_gt_val = [rgb_to_onehot(testy, color_dict)]
return pred_train_all, Y_gt_train, pred_test_all, Y_gt_val
#pred_train_all, pred_test_all, Y_pred_val, Y_gt_val = testing(model, trainx, trainy, testx, testy, weights_file = "model_onehot.h5")
##pred_train_all, Y_gt_train, pred_val_all, Y_gt_val = testing(model, trainx, trainy, testx, testy, weights_file = "model_onehot.h5")
pred_train_13, Y_gt_train_13, pred_val_all, Y_gt_val = testing_diffsizes(model, x_train, y_train, x_val, y_val, weights_file = "model_onehot.h5")
print(pred_val_all[0].shape)
print(Y_gt_val[0].shape)
#print(len(pred_train_all))
#print(len(Y_gt_train))
# Convert onehot to label
def to_class_no(y_hot_list):
y_class_list = []
n = len(y_hot_list)
for i in range(n):
out = np.argmax(y_hot_list[i])
y_class_list.append(out)
return y_class_list
def conf_matrix(Y_gt, Y_pred, num_classes = 9):
total_pixels = 0
kappa_sum = 0
sudo_confusion_matrix = np.zeros((num_classes, num_classes))
# if len(Y_pred.shape) == 3:
# h,w,c = Y_pred.shape
# Y_pred = np.reshape(Y_pred, (1,))
n = len(Y_pred)
for i in range(n):
y_pred = Y_pred[i]
y_gt = Y_gt[i]
#y_pred_hotcode = hotcode(y_pred)
#y_gt_hotcode = hotcode(y_gt)
pred = np.reshape(y_pred, (y_pred.shape[0]*y_pred.shape[1], y_pred.shape[2]))
gt = np.reshape(y_gt, (y_gt.shape[0]*y_gt.shape[1], y_gt.shape[2]))
pred = [i for i in pred]
gt = [i for i in gt]
pred = to_class_no(pred)
gt = to_class_no(gt)
# pred.tolist()
# gt.tolist()
gt = np.asarray(gt, dtype = 'int32')
pred = np.asarray(pred, dtype = 'int32')
conf_matrix = confusion_matrix(gt, pred, labels=[0,1,2,3,4,5,6,7,8])
kappa = cohen_kappa_score(gt,pred, labels=[0,1,2,3,4,5,6,7])
pixels = len(pred)
total_pixels = total_pixels+pixels
sudo_confusion_matrix = sudo_confusion_matrix + conf_matrix
kappa_sum = kappa_sum + kappa
final_confusion_matrix = sudo_confusion_matrix
final_kappa = kappa_sum/n
return final_confusion_matrix, final_kappa
confusion_matrix_train, kappa_train = conf_matrix(Y_gt_train_13, pred_train_13, num_classes = 9)
print('Confusion Matrix for training')
print(confusion_matrix_train)
print('Kappa Coeff for training without unclassified pixels')
print(kappa_train)
confusion_matrix_test, kappa_test = conf_matrix(Y_gt_val, pred_val_all, num_classes = 9)
print('Confusion Matrix for validation')
print(confusion_matrix_test)
print('Kappa Coeff for validation without unclassified pixels')
print(kappa_test)
# Pass Confusion matrix, label to which the accuracy needs to be found, number of classes to be considered
# Returns that particular class accuracy
def acc_of_class(class_label, conf_matrix, num_classes = 8):
numerator = conf_matrix[class_label, class_label]
denorminator = 0
for i in range(num_classes):
denorminator = denorminator + conf_matrix[class_label, i]
acc_of_class = numerator/denorminator
return acc_of_class
# On training
# Find accuray of all the classes NOT considering the unclassified pixels
for i in range(8):
acc_of_cl = acc_of_class(class_label = i, conf_matrix = confusion_matrix_train, num_classes = 8)
print('Accuracy of class '+str(i) + ' WITHOUT unclassified pixels - Training')
print(acc_of_cl)
# Find accuray of all the classes considering the unclassified pixels
for i in range(9):
acc_of_cl = acc_of_class(class_label = i, conf_matrix = confusion_matrix_train, num_classes = 9)
print('Accuracy of class '+str(i) + ' WITH unclassified pixels - Training')
print(acc_of_cl)
# On validation
# Find accuray of all the classes NOT considering the unclassified pixels
for i in range(8):
acc_of_cl = acc_of_class(class_label = i, conf_matrix = confusion_matrix_test, num_classes = 8)
print('Accuracy of class '+str(i) + ' WITHOUT unclassified pixels - Validation')
print(acc_of_cl)
# Find accuray of all the classes considering the unclassified pixels
for i in range(9):
acc_of_cl = acc_of_class(class_label = i, conf_matrix = confusion_matrix_test, num_classes = 9)
print('Accuracy of class '+str(i) + ' WITH unclassified pixels - Validation')
print(acc_of_cl)
# Calulating over all accuracy with and without unclassified pixels
def overall_acc(conf_matrix, include_unclassified_pixels = False):
if include_unclassified_pixels:
numerator = 0
for i in range(9):
numerator = numerator + conf_matrix[i,i]
denominator = 0
for i in range(9):
for j in range(9):
denominator = denominator + conf_matrix[i,j]
acc = numerator/denominator
return acc
else:
numerator = 0
for i in range(8):
numerator = numerator + conf_matrix[i,i]
denominator = 0
for i in range(8):
for j in range(8):
denominator = denominator + conf_matrix[i,j]
acc = numerator/denominator
return acc
# Training
# Over all accuracy without unclassified pixels
print('Over all accuracy WITHOUT unclassified pixels - Training')
print(overall_acc(conf_matrix = confusion_matrix_train, include_unclassified_pixels = False))
# Over all accuracy with unclassified pixels
print('Over all accuracy WITH unclassified pixels - Training')
print(overall_acc(conf_matrix = confusion_matrix_train, include_unclassified_pixels = True))
# Validation
# Over all accuracy without unclassified pixels
print('Over all accuracy WITHOUT unclassified pixels - Validation')
print(overall_acc(conf_matrix = confusion_matrix_test, include_unclassified_pixels = False))
# Over all accuracy with unclassified pixels
print('Over all accuracy WITH unclassified pixels - Validation')
print(overall_acc(conf_matrix = confusion_matrix_test, include_unclassified_pixels = True))
# Convert decimal onehot encode from prediction to actual onehot code
def dec_to_onehot(pred_all):
pred_all_onehot_list = []
for img in pred_all:
h, w, c = img.shape
for i in range(h):
for j in range(w):
argmax_index = np.argmax(img[i,j])
sudo_onehot_arr = np.zeros((9))
sudo_onehot_arr[argmax_index] = 1
onehot_encode = sudo_onehot_arr
img[i,j,:] = onehot_encode
pred_all_onehot_list.append[img]
return pred_all_onehot_list
color_dict = {0: (0, 0, 0),
1: (0, 125, 0),
2: (150, 80, 0),
3: (255, 255, 0),
4: (100, 100, 100),
5: (0, 255, 0),
6: (0, 0, 150),
7: (150, 150, 255),
8: (255, 255, 255)}
def rgb_to_onehot(rgb_arr, color_dict):
num_classes = len(color_dict)
shape = rgb_arr.shape[:2]+(num_classes,)
print(shape)
arr = np.zeros( shape, dtype=np.int8 )
for i, cls in enumerate(color_dict):
arr[:,:,i] = np.all(rgb_arr.reshape( (-1,3) ) == color_dict[i], axis=1).reshape(shape[:2])
return arr
def onehot_to_rgb(onehot, color_dict):
single_layer = np.argmax(onehot, axis=-1)
output = np.zeros( onehot.shape[:2]+(3,) )
for k in color_dict.keys():
output[single_layer==k] = color_dict[k]
return np.uint8(output)
# Pred on train, val, test and save outputs
weights_file = "model_onehot.h5"
model.load_weights(weights_file)
#y_pred_test_all = []
xtrain_list.append(x_val)
for i_ in range(len(xtrain_list)):
item = xtrain_list[i_]
h,w,c = item.shape
item = np.reshape(item,(1,h,w,c))
y_pred_train_img = model.predict(item)
ba,h,w,c = y_pred_train_img.shape
y_pred_train_img = np.reshape(y_pred_train_img,(h,w,c))
img = y_pred_train_img
h, w, c = img.shape
for i in range(h):
for j in range(w):
argmax_index = np.argmax(img[i,j])
sudo_onehot_arr = np.zeros((9))
sudo_onehot_arr[argmax_index] = 1
onehot_encode = sudo_onehot_arr
img[i,j,:] = onehot_encode
y_pred_train_img = onehot_to_rgb(img, color_dict)
tif = TIFF.open(filelist_trainx[i_])
image2 = tif.read_image()
h,w,c = image2.shape
y_pred_train_img = y_pred_train_img[:h, :w, :]
imx = Image.fromarray(y_pred_train_img)
imx.save("train_predictions/pred"+str(i_+1)+".jpg")
for i_ in range(len(xtest_list1)):
item = xtest_list1[i_]
h,w,c = item.shape
item = np.reshape(item,(1,h,w,c))
y_pred_test_img = model.predict(item)
ba,h,w,c = y_pred_test_img.shape
y_pred_test_img = np.reshape(y_pred_test_img,(h,w,c))
img = y_pred_test_img
h, w, c = img.shape
for i in range(h):
for j in range(w):
argmax_index = np.argmax(img[i,j])
sudo_onehot_arr = np.zeros((9))
sudo_onehot_arr[argmax_index] = 1
onehot_encode = sudo_onehot_arr
img[i,j,:] = onehot_encode
y_pred_test_img = onehot_to_rgb(img, color_dict)
tif = TIFF.open(filelist_testx[i_])
image2 = tif.read_image()
h,w,c = image2.shape
y_pred_test_img = y_pred_test_img[:h, :w, :]
imx = Image.fromarray(y_pred_test_img)
imx.save("test_outputs/out"+str(i_+1)+".jpg")