-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathunet.py
93 lines (79 loc) · 4.68 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import PIL
from PIL import Image
import matplotlib.pyplot as plt
from libtiff import TIFF
from libtiff import TIFFfile, TIFFimage
from scipy.misc import imresize
import numpy as np
import glob
import cv2
import os
import math
import skimage.io as io
import skimage.transform as trans
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as K
from iou import iou
#%matplotlib inline
def UNet(shape = (None,None,4)):
# Left side of the U-Net
inputs = Input(shape)
# in_shape = inputs.shape
# print(in_shape)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(inputs)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv1)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv2)
conv2 = BatchNormalization()(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv3)
conv3 = BatchNormalization()(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv4)
conv4 = BatchNormalization()(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
# Bottom of the U-Net
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv5)
conv5 = BatchNormalization()(conv5)
drop5 = Dropout(0.5)(conv5)
# Upsampling Starts, right side of the U-Net
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(drop5))
merge6 = concatenate([drop4,up6], axis = 3)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv6)
conv6 = BatchNormalization()(conv6)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv6))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv7)
conv7 = BatchNormalization()(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv1,up9], axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv9)
conv9 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv9)
conv9 = BatchNormalization()(conv9)
# Output layer of the U-Net with a softmax activation
conv10 = Conv2D(9, 1, activation = 'softmax')(conv9)
model = Model(input = inputs, output = conv10)
model.compile(optimizer = Adam(lr = 0.000001), loss = 'categorical_crossentropy', metrics = ['accuracy', iou])
model.summary()
#filelist_modelweights = sorted(glob.glob('*.h5'), key=numericalSort)
#if 'model_nocropping.h5' in filelist_modelweights:
# model.load_weights('model_nocropping.h5')
return model