-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtest.py
173 lines (150 loc) · 6.26 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from keras.preprocessing import image
from keras.models import Model, Sequential
from keras.layers import Activation, Dense, GlobalAveragePooling2D, BatchNormalization, Dropout, Conv2D, Conv2DTranspose, AveragePooling2D, MaxPooling2D, UpSampling2D, Input, Reshape
from keras import backend as K
from keras.optimizers import Nadam, Adam, SGD
from keras.metrics import categorical_accuracy, binary_accuracy
#from keras_contrib.losses import jaccard
import tensorflow as tf
import numpy as np
import pandas as pd
import glob
import PIL
from PIL import Image
import matplotlib.pyplot as plt
def jaccard_distance(y_true, y_pred, smooth=100):
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
sum_ = K.sum(K.square(y_true), axis = -1) + K.sum(K.square(y_pred), axis=-1)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return (1 - jac)
def iou(y_true, y_pred, smooth = 100):
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
sum_ = K.sum(K.square(y_true), axis = -1) + K.sum(K.square(y_pred), axis=-1)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return jac
# To read the images in numerical order
import re
numbers = re.compile(r'(\d+)')
def numericalSort(value):
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts
# Initializing all the images into 4d arrays.
filelist_trainx = sorted(glob.glob('trainx/*.jpg'), key=numericalSort)
#filelist_trainx.sort()
X_train = np.array([np.array(Image.open(fname)) for fname in filelist_trainx])
filelist_trainy = sorted(glob.glob('trainy/*.jpg'), key=numericalSort)
#filelist_trainy.sort()
Y_train = np.array([np.array(Image.open(fname)) for fname in filelist_trainy])
filelist_testx = sorted(glob.glob('testx/*.jpg'), key=numericalSort)
#filelist_testx.sort()
X_test = np.array([np.array(Image.open(fname)) for fname in filelist_testx])
filelist_testy = sorted(glob.glob('testy/*.jpg'), key=numericalSort)
#filelist_testy.sort()
Y_test = np.array([np.array(Image.open(fname)) for fname in filelist_testy])
filelist_valx = sorted(glob.glob('validationx/*.jpg'), key=numericalSort)
#filelist_valx.sort()
X_val = np.array([np.array(Image.open(fname)) for fname in filelist_valx])
filelist_valy = sorted(glob.glob('validationy/*.jpg'), key=numericalSort)
#filelist_valy.sort()
Y_val = np.array([np.array(Image.open(fname)) for fname in filelist_valy])
def UnPooling2x2ZeroFilled(x):
out = tf.concat([x, tf.zeros_like(x)], 3)
out = tf.concat([out, tf.zeros_like(out)], 2)
sh = x.get_shape().as_list()
if None not in sh[1:]:
out_size = [-1, sh[1] * 2, sh[2] * 2, sh[3]]
return tf.reshape(out, out_size)
else:
shv = tf.shape(x)
ret = tf.reshape(out, tf.stack([-1, shv[1] * 2, shv[2] * 2, sh[3]]))
return ret
(x_train, y_train), (x_test, y_test), (x_val, y_val) = (X_train, Y_train), (X_test, Y_test), (X_val, Y_val)
# Convolution Layers (BatchNorm after non-linear activation)
img_input = Input(shape= (192, 256, 3))
x = Conv2D(16, (3, 3), padding='same', name='conv1')(img_input)
x = BatchNormalization(name='bn1')(x)
x = Activation('relu')(x)
x = Conv2D(32, (3, 3), padding='same', name='conv2')(x)
x = BatchNormalization(name='bn2')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(64, (3, 3), padding='same', name='conv3')(x)
x = BatchNormalization(name='bn3')(x)
x = Activation('relu')(x)
x = Conv2D(64, (3, 3), padding='same', name='conv4')(x)
x = BatchNormalization(name='bn4')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(128, (3, 3), padding='same', name='conv5')(x)
x = BatchNormalization(name='bn5')(x)
x = Activation('relu')(x)
x = Conv2D(128, (4, 4), padding='same', name='conv6')(x)
x = BatchNormalization(name='bn6')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(256, (3, 3), padding='same', name='conv7')(x)
x = BatchNormalization(name='bn7')(x)
x = Dropout(0.5)(x)
x = Activation('relu')(x)
x = Conv2D(256, (3, 3), padding='same', name='conv8')(x)
x = BatchNormalization(name='bn8')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(512, (3, 3), padding='same', name='conv9')(x)
x = BatchNormalization(name='bn9')(x)
x = Activation('relu')(x)
x = Dense(1024, activation = 'relu', name='fc1')(x)
x = Dense(1024, activation = 'relu', name='fc2')(x)
# Deconvolution Layers (BatchNorm after non-linear activation)
x = Conv2DTranspose(256, (3, 3), padding='same', name='deconv1')(x)
x = BatchNormalization(name='bn19')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(256, (3, 3), padding='same', name='deconv2')(x)
x = BatchNormalization(name='bn12')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(128, (3, 3), padding='same', name='deconv3')(x)
x = BatchNormalization(name='bn13')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(128, (4, 4), padding='same', name='deconv4')(x)
x = BatchNormalization(name='bn14')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(128, (3, 3), padding='same', name='deconv5')(x)
x = BatchNormalization(name='bn15')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(64, (3, 3), padding='same', name='deconv6')(x)
x = BatchNormalization(name='bn16')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(32, (3, 3), padding='same', name='deconv7')(x)
x = BatchNormalization(name='bn20')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(16, (3, 3), padding='same', name='deconv8')(x)
x = BatchNormalization(name='bn17')(x)
x = Dropout(0.5)(x)
x = Activation('relu')(x)
x = Conv2DTranspose(1, (3, 3), padding='same', name='deconv9')(x)
x = BatchNormalization(name='bn18')(x)
x = Activation('sigmoid')(x)
pred = Reshape((192,256))(x)
model = Model(inputs=img_input, outputs=pred)
model.compile(optimizer= Adam(lr = 0.003), loss= [jaccard_distance], metrics=[iou])
model.load_weights("model.h5")
predictions_valid = model.predict(x_val, batch_size=16, verbose=1)
accuracy = model.evaluate(x=x_val,y=y_val,batch_size=16)
print("Accuracy: ",accuracy[1])
index = 45
predict_input = x_val[index]
ground_truth = y_val[index]
predictions =model.predict(predict_input.reshape(1,192,256,3), batch_size=1)
prediction = predictions.reshape(192, 256)
#index = 45
plt.figure()
plt.imshow(prediction)
plt.title('Predicted')
plt.figure()
plt.imshow(ground_truth)
plt.title('Ground Turth')