-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathbert_siamese.py
705 lines (516 loc) · 22.8 KB
/
bert_siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
import torch
from pytorch_pretrained_bert import BertTokenizer, BertModel, BertForMaskedLM
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from random import randrange
import torch.nn.functional as F
import pandas as pd
from pathlib import Path
from matplotlib import pyplot as plt
from argparse import ArgumentParser
import sys
parser = ArgumentParser()
parser.add_argument('-num_labels', action="store", dest="num_labels", type=int)
args = parser.parse_args()
num_labels = args.num_labels
#home = str(Path.home())
train_path = '/LIAR-PLUS/dataset/train2.tsv'
test_path = '/LIAR-PLUS/dataset/test2.tsv'
val_path = '/LIAR-PLUS/dataset/val2.tsv'
train_df = pd.read_csv(train_path, sep="\t", header=None)
test_df = pd.read_csv(test_path, sep="\t", header=None)
val_df = pd.read_csv(val_path, sep="\t", header=None)
# Fill nan (empty boxes) with 0
train_df = train_df.fillna(0)
test_df = test_df.fillna(0)
val_df = val_df.fillna(0)
train = train_df.values
test = test_df.values
val = val_df.values
labels = {'train':[train[i][2] for i in range(len(train))], 'test':[test[i][2] for i in range(len(test))], 'val':[val[i][2] for i in range(len(val))]}
statements = {'train':[train[i][3] for i in range(len(train))], 'test':[test[i][3] for i in range(len(test))], 'val':[val[i][3] for i in range(len(val))]}
subjects = {'train':[train[i][4] for i in range(len(train))], 'test':[test[i][4] for i in range(len(test))], 'val':[val[i][4] for i in range(len(val))]}
speakers = {'train':[train[i][5] for i in range(len(train))], 'test':[test[i][5] for i in range(len(test))], 'val':[val[i][5] for i in range(len(val))]}
jobs = {'train':[train[i][6] for i in range(len(train))], 'test':[test[i][6] for i in range(len(test))], 'val':[val[i][6] for i in range(len(val))]}
states = {'train':[train[i][7] for i in range(len(train))], 'test':[test[i][7] for i in range(len(test))], 'val':[val[i][7] for i in range(len(val))]}
affiliations = {'train':[train[i][8] for i in range(len(train))], 'test':[test[i][8] for i in range(len(test))], 'val':[val[i][8] for i in range(len(val))]}
credits = {'train':[train[i][9:14] for i in range(len(train))], 'test':[test[i][9:14] for i in range(len(test))], 'val':[val[i][9:14] for i in range(len(val))]}
contexts = {'train':[train[i][14] for i in range(len(train))], 'test':[test[i][14] for i in range(len(test))], 'val':[val[i][14] for i in range(len(val))]}
justification = {'train':[train[i][15] for i in range(len(train))], 'test':[test[i][15] for i in range(len(test))], 'val':[val[i][15] for i in range(len(val))]}
if num_labels == 6:
def to_onehot(a):
a_cat = [0]*len(a)
for i in range(len(a)):
if a[i]=='true':
a_cat[i] = [1,0,0,0,0,0]
elif a[i]=='mostly-true':
a_cat[i] = [0,1,0,0,0,0]
elif a[i]=='half-true':
a_cat[i] = [0,0,1,0,0,0]
elif a[i]=='barely-true':
a_cat[i] = [0,0,0,1,0,0]
elif a[i]=='false':
a_cat[i] = [0,0,0,0,1,0]
elif a[i]=='pants-fire':
a_cat[i] = [0,0,0,0,0,1]
else:
print('Incorrect label')
return a_cat
elif num_labels == 2:
def to_onehot(a):
a_cat = [0]*len(a)
for i in range(len(a)):
if a[i]=='true':
a_cat[i] = [1,0]
elif a[i]=='mostly-true':
a_cat[i] = [1,0]
elif a[i]=='half-true':
a_cat[i] = [1,0]
elif a[i]=='barely-true':
a_cat[i] = [0,1]
elif a[i]=='false':
a_cat[i] = [0,1]
elif a[i]=='pants-fire':
a_cat[i] = [0,1]
else:
print('Incorrect label')
return a_cat
else:
print('Invalid number of labels. The number of labels should be either 2 or 6')
sys.exit()
labels_onehot = {'train':to_onehot(labels['train']), 'test':to_onehot(labels['test']), 'val':to_onehot(labels['val'])}
# Preparing meta data
#credit['train'][2]
metadata = {'train':[0]*len(train), 'val':[0]*len(val), 'test':[0]*len(test)}
for i in range(len(train)):
subject = subjects['train'][i]
if subject == 0:
subject = 'None'
speaker = speakers['train'][i]
if speaker == 0:
speaker = 'None'
job = jobs['train'][i]
if job == 0:
job = 'None'
state = states['train'][i]
if state == 0:
state = 'None'
affiliation = affiliations['train'][i]
if affiliation == 0:
affiliation = 'None'
context = contexts['train'][i]
if context == 0 :
context = 'None'
meta = subject + ' ' + speaker + ' ' + job + ' ' + state + ' ' + affiliation + ' ' + context
metadata['train'][i] = meta
for i in range(len(val)):
subject = subjects['val'][i]
if subject == 0:
subject = 'None'
speaker = speakers['val'][i]
if speaker == 0:
speaker = 'None'
job = jobs['val'][i]
if job == 0:
job = 'None'
state = states['val'][i]
if state == 0:
state = 'None'
affiliation = affiliations['val'][i]
if affiliation == 0:
affiliation = 'None'
context = contexts['val'][i]
if context == 0 :
context = 'None'
meta = subject + ' ' + speaker + ' ' + job + ' ' + state + ' ' + affiliation + ' ' + context
metadata['val'][i] = meta
for i in range(len(test)):
subject = subjects['test'][i]
if subject == 0:
subject = 'None'
speaker = speakers['test'][i]
if speaker == 0:
speaker = 'None'
job = jobs['test'][i]
if job == 0:
job = 'None'
state = states['test'][i]
if state == 0:
state = 'None'
affiliation = affiliations['test'][i]
if affiliation == 0:
affiliation = 'None'
context = contexts['test'][i]
if context == 0 :
context = 'None'
meta = subject + ' ' + speaker + ' ' + job + ' ' + state + ' ' + affiliation + ' ' + context
metadata['test'][i] = meta
# Credit score calculation
credit_score = {'train':[0]*len(train), 'val':[0]*len(val), 'test':[0]*len(test)}
for i in range(len(train)):
credit = credits['train'][i]
if sum(credit) == 0:
score = 0.5
else:
score = (credit[3]*0.2 + credit[2]*0.5 + credit[0]*0.75 + credit[1]*0.9 + credit[4]*1)/(sum(credit))
credit_score['train'][i] = [score for i in range(2304)]
for i in range(len(val)):
credit = credits['val'][i]
if sum(credit) == 0:
score = 0.5
else:
score = (credit[3]*0.2 + credit[2]*0.5 + credit[0]*0.75 + credit[1]*0.9 + credit[4]*1)/(sum(credit))
credit_score['val'][i] = [score for i in range(2304)]
for i in range(len(test)):
credit = credits['test'][i]
if sum(credit) == 0:
score = 0.5
else:
score = (credit[3]*0.2 + credit[2]*0.5 + credit[0]*0.75 + credit[1]*0.9 + credit[4]*1)/(sum(credit))
credit_score['test'][i] = [score for i in range(2304)]
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BertForSequenceClassification(nn.Module):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
model = BertForSequenceClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, num_labels=2): # Change number of labels here.
super(BertForSequenceClassification, self).__init__()
self.num_labels = num_labels
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size*3, num_labels)
#self.fc1 = nn.Linear(config.hidden_size*2, 512)
nn.init.xavier_normal_(self.classifier.weight)
'''def forward_once(self, x):
# Forward pass
output = self.cnn1(x)
output = output.view(output.size()[0], -1)
output = self.fc1(output)
return output'''
def forward_once(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
pooled_output = self.dropout(pooled_output)
#logits = self.classifier(pooled_output)
return pooled_output
def forward(self, input_ids1, input_ids2, input_ids3, credit_sc):
# forward pass of input 1
output1 = self.forward_once(input_ids1, token_type_ids=None, attention_mask=None, labels=None)
# forward pass of input 2
output2 = self.forward_once(input_ids2, token_type_ids=None, attention_mask=None, labels=None)
output3 = self.forward_once(input_ids3, token_type_ids=None, attention_mask=None, labels=None)
out = torch.cat((output1, output2, output3), 1)
#print(out.shape)
# Multiply the credit score with the output after concatnation
out = torch.add(credit_sc, out)
#out = self.fc1(out)
logits = self.classifier(out)
return logits
def freeze_bert_encoder(self):
for param in self.bert.parameters():
param.requires_grad = False
def unfreeze_bert_encoder(self):
for param in self.bert.parameters():
param.requires_grad = True
from pytorch_pretrained_bert import BertConfig
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForSequenceClassification(num_labels)
# Loading the statements
X_train = statements['train']
y_train = labels_onehot['train']
X_val = statements['val']
y_val = labels_onehot['val']
X_train = X_train + X_val
y_train = y_train + y_val
X_test = statements['test']
y_test = labels_onehot['test']
# Loading the justification
X_train_just = justification['train']
X_val_just = justification['val']
X_train_just = X_train_just + X_val_just
X_test_just = statements['test']
# Loading the meta data
X_train_meta = metadata['train']
X_val_meta = metadata['val']
X_train_meta = X_train_meta + X_val_meta
X_test_meta = metadata['test']
# Loading Credit scores
X_train_credit = credit_score['train']
X_val_credit = credit_score['val']
X_train_credit = X_train_credit+X_val_credit
X_test_credit = credit_score['test']
# Small data partitioned for debugging
'''X_train = X_train[:100]
y_train = y_train[:100]
X_test = X_test[:100]
y_test = y_test[:100]
X_train_just = X_train_just[:100]
X_test_just = X_test_just[:100]
X_train_meta = X_train_meta[:100]
X_test_meta = X_test_meta[:100]
X_train_credit = X_train_credit[:100]
X_test_credit = X_test_credit[:100]'''
max_seq_length_stat = 64
max_seq_length_just = 256
max_seq_length_meta = 32
class text_dataset(Dataset):
def __init__(self,x_y_list, transform=None):
self.x_y_list = x_y_list
self.transform = transform
def __getitem__(self,index):
# Tokenize statements
tokenized_review = tokenizer.tokenize(self.x_y_list[0][index])
if len(tokenized_review) > max_seq_length_stat:
tokenized_review = tokenized_review[:max_seq_length_stat]
ids_review = tokenizer.convert_tokens_to_ids(tokenized_review)
padding = [0] * (max_seq_length_stat - len(ids_review))
ids_review += padding
assert len(ids_review) == max_seq_length_stat
#print(ids_review)
ids_review = torch.tensor(ids_review)
fakeness = self.x_y_list[4][index] # color
list_of_labels = [torch.from_numpy(np.array(fakeness))]
# Tokenize justifications
#print(self.x_y_list[1][6833])
#print(index)
# Making sure that if there is no justification in a row(nan value converted to 0 using pandas), give it a justification called 'No justification' for training to be possible.
if self.x_y_list[1][index] == 0:
self.x_y_list[1][index] = 'No justification'
tokenized_review_just = tokenizer.tokenize(self.x_y_list[1][index])
if len(tokenized_review_just) > max_seq_length_just:
tokenized_review_just = tokenized_review_just[:max_seq_length_just]
ids_review_just = tokenizer.convert_tokens_to_ids(tokenized_review_just)
padding = [0] * (max_seq_length_just - len(ids_review_just))
ids_review_just += padding
assert len(ids_review_just) == max_seq_length_just
#print(ids_review)
ids_review_just = torch.tensor(ids_review_just)
fakeness = self.x_y_list[4][index] # color
list_of_labels = [torch.from_numpy(np.array(fakeness))]
# Tokenize metadata
tokenized_review_meta = tokenizer.tokenize(self.x_y_list[2][index])
if len(tokenized_review_meta) > max_seq_length_meta:
tokenized_review_meta = tokenized_review_meta[:max_seq_length_meta]
ids_review_meta = tokenizer.convert_tokens_to_ids(tokenized_review_meta)
padding = [0] * (max_seq_length_meta - len(ids_review_meta))
ids_review_meta += padding
assert len(ids_review_meta) == max_seq_length_meta
#print(ids_review)
ids_review_meta = torch.tensor(ids_review_meta)
fakeness = self.x_y_list[4][index] # color
list_of_labels = [torch.from_numpy(np.array(fakeness))]
credit_scr = self.x_y_list[3][index] # Credit score
#ones_768 = np.ones((768))
#credit_scr = credit_scr * ones_768
credit_scr = torch.tensor(credit_scr)
return [ids_review, ids_review_just, ids_review_meta, credit_scr], list_of_labels[0]
def __len__(self):
return len(self.x_y_list[0])
batch_size = 16
# Train Statements and Justifications
train_lists = [X_train, X_train_just, X_train_meta, X_train_credit, y_train]
# Test Statements and Justifications
test_lists = [X_test, X_test_just, X_train_meta, X_test_credit, y_test]
# Preparing the data (Tokenize)
training_dataset = text_dataset(x_y_list = train_lists)
test_dataset = text_dataset(x_y_list = test_lists)
# Prepare the training dictionaries
dataloaders_dict = {'train': torch.utils.data.DataLoader(training_dataset, batch_size=batch_size, shuffle=True, num_workers=0),
'val':torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
}
dataset_sizes = {'train':len(train_lists[0]),
'val':len(test_lists[0])}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
train_acc = []
val_acc = []
train_loss = []
val_loss = []
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
print('starting')
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 100
best_acc = 0
for epoch in range(num_epochs):
epoch_start = time.time()
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
fakeness_corrects = 0
# Iterate over data.
for inputs, fakeness in dataloaders_dict[phase]:
inputs1 = inputs[0] # News statement input
inputs2 = inputs[1] # Justification input
inputs3 = inputs[2] # Meta data input
inputs4 = inputs[3] # Credit scores input
inputs1 = inputs1.to(device)
inputs2 = inputs2.to(device)
inputs3 = inputs3.to(device)
inputs4 = inputs4.to(device)
fakeness = fakeness.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
#print(inputs)
outputs = model(inputs1, inputs2, inputs3, inputs4)
outputs = F.softmax(outputs,dim=1)
loss = criterion(outputs, torch.max(fakeness.float(), 1)[1])
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs1.size(0)
fakeness_corrects += torch.sum(torch.max(outputs, 1)[1] == torch.max(fakeness, 1)[1])
epoch_loss = running_loss / dataset_sizes[phase]
fakeness_acc = fakeness_corrects.double() / dataset_sizes[phase]
print('{} total loss: {:.4f} '.format(phase,epoch_loss ))
print('{} fakeness_acc: {:.4f}'.format(
phase, fakeness_acc))
# Saving training acc and loss for each epoch
fakeness_acc1 = fakeness_acc.data
fakeness_acc1 = fakeness_acc1.cpu()
fakeness_acc1 = fakeness_acc1.numpy()
train_acc.append(fakeness_acc1)
#epoch_loss1 = epoch_loss.data
#epoch_loss1 = epoch_loss1.cpu()
#epoch_loss1 = epoch_loss1.numpy()
train_loss.append(epoch_loss)
if phase == 'val' and fakeness_acc > best_acc:
print('Saving with accuracy of {}'.format(fakeness_acc),
'improved over previous {}'.format(best_acc))
best_acc = fakeness_acc
# Saving val acc and loss for each epoch
fakeness_acc1 = fakeness_acc.data
fakeness_acc1 = fakeness_acc1.cpu()
fakeness_acc1 = fakeness_acc1.numpy()
val_acc.append(fakeness_acc1)
#epoch_loss1 = epoch_loss.data
#epoch_loss1 = epoch_loss1.cpu()
#epoch_loss1 = epoch_loss1.numpy()
val_loss.append(epoch_loss)
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(model.state_dict(), 'bert_model_test_noFC1_triBERT_binary_focalloss.pth')
print('Time taken for epoch'+ str(epoch+1)+ ' is ' + str((time.time() - epoch_start)/60) + ' minutes')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(float(best_acc)))
# load best model weights
model.load_state_dict(best_model_wts)
return model, train_acc, val_acc, train_loss, val_loss
model.to(device)
lrlast = .0001
lrmain = .00001
optim1 = optim.Adam(
[
{"params":model.bert.parameters(),"lr": lrmain},
{"params":model.classifier.parameters(), "lr": lrlast},
])
#optim1 = optim.Adam(model.parameters(), lr=0.001)#,momentum=.9)
# Observe that all parameters are being optimized
optimizer_ft = optim1
criterion = nn.CrossEntropyLoss()
'''import focal_loss
loss_args = {"alpha": 0.5, "gamma": 2.0}
criterion = focal_loss.FocalLoss(*loss_args)'''
# Decay LR by a factor of 0.1 every 3 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=3, gamma=0.1)
model_ft1, train_acc, val_acc, train_loss, val_loss = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,num_epochs=20)
# Accuracy plots
'''print(val_acc)
print(val_loss)
#plt.plot(train_acc)
plt.plot(val_acc)
plt.title('Model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['val'], loc='upper left')
#plt.show()
plt.savefig('accuracy.png')
plt.close()
print('Saved Accuracy plot')
# Loss plots
#plt.plot(train_loss)
plt.plot(val_loss)
plt.title('Model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['val'], loc='upper right')
#plt.show()
plt.savefig('loss.png')
plt.close()
print('Saved Loss plot')'''