-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtcalc.cc
546 lines (452 loc) · 16 KB
/
tcalc.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*************************************
Code by: Tejas Pendse; 31/8/12
Usage: "resample -i <input obj/phantom> -o <output> -m <MR param file> [optional/diagnostic params]"
Optional params:
-e,--te : Scanner Echo time
-r,--tr : Scanner Repetition time
## Theory calc currently only works for slice select gradient along Z! ##
*************************************/
#include "utils/options.h"
#include "newimage/newimageall.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <time.h>
using namespace MISCMATHS;
using namespace NEWIMAGE;
using namespace Utilities;
#define pi 3.1416
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title="resample --Tejas Pendse 2012";
string examples="resample -i <input image> [-options] -o <output>";
/**Required**/
Option<string> opt_input(string("-i,--input"), "",
string("Input Image (4D phantom for theoretical calculations)"),
true, requires_argument);
Option<string> opt_output(string("-o,--output"), "",
string("Output Image"),
true, requires_argument);
/**Scanner options**/
Option<float> opt_te(string("-e,--te"), 0,
string(" Echo Time (TE) in seconds \t\t[For example: T1-weighted images for 3T TE=0.01 s]"),
true, requires_argument);
Option<float> opt_tr(string("-r,--tr"), 0,
string(" Repetition Time (TR) in seconds \t[For example: T1-weighted images for 3T TR=0.7 s]"),
true, requires_argument);
Option<string> opt_mrpar(string("-m,--mrpar"), "",
string("MRpar File"),
true, requires_argument);
/**Optional**/
/**Image options**/
Option<int> opt_nx(string("-x,--nx"), 0,
string(" Number of Voxels along X (default: phantom)"),
false, requires_argument);
Option<int> opt_ny(string("-y,--ny"), 0,
string(" Number of Voxels along Y (default: phantom)"),
false, requires_argument);
Option<int> opt_nz(string("-z,--nz"), 0,
string(" Number of Voxels along Z (default: phantom)"),
false, requires_argument);
Option<float> opt_dx(string("-a,--dx"), 0.0,
string(" Size of voxels along X(default: phantom)"),
false, requires_argument);
Option<float> opt_dy(string("-b,--dy"), 0.0,
string(" Size of voxels along Y(default: phantom)"),
false, requires_argument);
Option<float> opt_dz(string("-c,--dz"), 0.0,
string(" Size of voxels along Z i.e., number of slices (default: phantom)"),
false, requires_argument);
Option<float> opt_zstart(string("--zstart"), 0.0,
string("Starting position of the volume in mm (default = 0mm)"),
false,requires_argument);
Option<float> opt_sigma(string("--sigma"), 0.0,
string("\tAdd noise with given sigma (default: 0 i.e., no noise)"),
false, requires_argument);
Option<bool> opt_save_og(string("-s,--save"), false,
string("Save original non-resample output image"),
false, no_argument);
/**Diagnostic**/
Option<bool> help(string("-?,--help"), false,
string("Display help message"),
false, no_argument);
Option<bool> verbose(string("-v,--verbose"), false,
string("switch on diagnostic messages"),
false, no_argument);
int nonoptarg;
/******
'do_work' : (Step 5-6 can/should be done in k-space !? Not centered, so nope ?!)
1. Read input files/images
2. If MRpar file is given, compute theory value
2.1. Compute theory volume
2.2. Save volume if defined
3. Calculate output image size in mm = dimensions*voxel-size
3.1. If output size is smaller than phantom size, isotropic resample by appropriate scale, i.e. w.r.t. largest dimesion diff
4. Pad zeroes according to difference between phantom and output mm sizes (right padded more (?why-check?))
5. Resample each slice - same scale since Nx=Ny
6. Resample along Z (!Trying to emulate possum!)
6.1. Resample by scale of voxel size
6.2. Select number of slices
7. Save output
******/
int do_work(int argc, char* argv[])
{
//Read inputs
bool compute_theory = true;
//Read inputs: Scanner options
double te = opt_te.value();
double tr = opt_tr.value();
//Check if noise is to be added
bool addNoise = false;
float sigma = opt_sigma.value();
if(sigma != 0)
{
if(sigma > 0)
addNoise = true;
else
cerr << "Error: Sigma can't be negative!" << endl;
}
//MRpar matrix file
Matrix mrpar;
//Read inputs: Sampling dimensions
RowVector imdims(3);
RowVector voxdims(3);
imdims(1) = opt_nx.value();
imdims(2) = opt_ny.value();
imdims(3) = opt_nz.value();
voxdims(1) = opt_dx.value();
voxdims(2) = opt_dy.value();
voxdims(3) = opt_dz.value();
int zstart = (int)floor(opt_zstart.value() / voxdims(3));
//Check inputs
for( int i=1; i<=3; i++)
{
if(imdims(i) < 0)
{
cerr << "Error: Image dimensions must be positive!";
cerr << "--IMG-DIM " << i << "=" << imdims(i) << endl;
exit(0);
}
if(voxdims(i) < 0)
{
cerr << "Error: Voxel dimensions must be positive!\t";
cerr << "--VOXEL-DIM " << i << "=" << voxdims(i) << endl;
exit(0);
}
}
//Read inputs: input/phantom image spec
RowVector ph_imdims(3);
RowVector ph_voxdims(3);
if(verbose.value()) cout << "Reading input volume: " << opt_input.value() << endl;
//Read inputs: input/phantom
volume4D<double> phantom;
volume<double> input;
if(opt_mrpar.value() == "")
{
compute_theory = false;
cout << "No MRPar file! Only resampling input 3D image..." << endl;
if(verbose.value())
if(te != 0 || tr != 0)
cerr << "Warning! No MRpar file given, TE/TR will not be used!" << endl;
read_volume(input,opt_input.value());
//Image size
ph_imdims(1) = input.xsize();
ph_imdims(2) = input.ysize();
ph_imdims(3) = input.zsize();
//Voxel size
ph_voxdims(1) = input.xdim();
ph_voxdims(2) = input.ydim();
ph_voxdims(3) = input.zdim();
}
else
{
if(verbose.value()) cout << "Input object: 4D phantom" << endl;
read_volume4D(phantom,opt_input.value());
//Read the MRpar file
mrpar = read_ascii_matrix(opt_mrpar.value());
bool thereIsAnError = false;
if(mrpar.Ncols() < 3)
{
cerr << "Error: MRpar file doesn't have enough number of columns!" << endl;
thereIsAnError++;
}
if(mrpar.Nrows() < phantom.tsize())
{
cerr << "Error: MRpar doesn't have enough number of rows!" << endl;
thereIsAnError++;
}
//If theory calculations are needed, check if TE/TR are non-zero
if(te == 0 || tr == 0)
{
cerr << "Error: Theory calculations need non-zero TE/TR!" << endl;
thereIsAnError++;
}
if(thereIsAnError) exit(EXIT_FAILURE);
//Image size
ph_imdims(1) = phantom.xsize();
ph_imdims(2) = phantom.ysize();
ph_imdims(3) = phantom.zsize();
//Voxel size
ph_voxdims(1) = phantom.xdim();
ph_voxdims(2) = phantom.ydim();
ph_voxdims(3) = phantom.zdim();
}
//Check if volume fits
if(zstart > ph_imdims(3)*ph_voxdims(3))
{
cerr << "Error: Dimensions Z-dimensions don't fit in the object" << endl;
exit(0);
}
//Check if any input dimension is 0 and replace by phantom dimension
for( int i=1; i<=3; i++)
{
//If this is true, then voxels are given
if(imdims(i) == 0)
imdims(i) = ph_imdims(i);
if(voxdims(i) == 0)
{
voxdims(i) = ph_imdims(i)*ph_voxdims(i)/imdims(i);
if(verbose.value())
{
//unnecessary really
cout << "Output voxel ";
if(i==1) cout << "X-size calculated as:\t" << voxdims(i) << endl;
else if(i==2) cout << "Y-size calculated as:\t" << voxdims(i) << endl;
else if(i==3) cout << "Z-size calculated as:\t" << voxdims(i) << endl;
}
}
}
volume<double> output;
//All initialisations done
/****************************
Calculate theory volume
****************************/
if(compute_theory)
{
output.reinitialize((int)ph_imdims(1),(int)ph_imdims(2),(int)ph_imdims(3)); output=0;
if(verbose.value()) cout << "Computing theoretical volume...\nCalculating signal values..." << endl;
//Signal stores NMR signal from each tissue
RowVector signal(phantom.tsize());
for (int i=1; i<=phantom.tsize(); i++)
{
double t1 = mrpar(i,1);
double t2 = mrpar(i,2);
//Theory equation
//signal(i) = (1-exp(-tr/mrpar(i,1))) * exp(-te/mrpar(i,2)); //Old equations: specific for T1
//Changed 14.12.12 - new equation generalised
signal(i) = mrpar(i,3)* (1 - 2*exp( (-tr + te/2)/t1 ) + exp( -tr/t1 )) * exp( -te/t2 );
if(verbose.value()) cout << "Contrast values are: " << signal(i)<<endl;
}
if(verbose.value()) cout << "Calculating output values..." << endl;
//Loop through all phantom voxels
//if(verbose.value()) cout << "Tissue: " << t << endl;
for( int z=phantom.minz(); z <= phantom.maxz(); z++)
for( int y=phantom.miny(); y <= phantom.maxy(); y++)
for( int x=phantom.minx(); x <= phantom.maxx(); x++)
for( int t=0; t < phantom.tsize(); t++)
{
output(x,y,z) += phantom(x,y,z,t) * signal(t+1);
}
//if any noise is to be added, add it to this volume
//Code taken from possum:systemnoise
if(addNoise)
{
if(verbose.value()) cout << "Adding noise..." << endl;
//Was trying to mimic what 'possumX_postproc.sh' & 'systemnoise' do. But for the moment, just sigma as the option
//float p98 = output.percentile(0.98);
//float p02 = output.percentile(0.02);
//float thresh = 0.1*p98 + 0.9*p02;
//output.threshold(thresh);
//float medint = output.percentile(0.5);
//float sigma = medint/snr;
//sigma = sigma/output.xsize();
Matrix noise(output.xsize(),output.ysize());
time_t loc;
time(&loc);
int seed_val=loc%105634;
for(int z=output.minz(); z<=output.maxz(); z++)
{
srand(seed_val+z);
noise = normrnd(output.xsize(),output.ysize(),0,sigma);
for(int y=output.miny(); y<=output.maxy(); y++)
for(int x=output.minx(); x<=output.maxx(); x++)
output(x,y,z) += noise(x-output.minx()+1,y-output.miny()+1);
}
}
//Output here is the original theory volume, i.e. not resampled
if(opt_save_og.value())
{
if(verbose.value()) cout << "Saving original volume as '" << opt_output.value() <<"_full.nii.gz'..." << endl;
save_volume(output,opt_output.value()+"_full");
}
}
else
{
if(verbose.value()) cout << "No theory calculations..." << endl;
//Expected output from theory initialized as the input
output = input;
}
/**
1. Check if any dimensions smaller than phimdims*phvoxdims
2. Pad to next largest factor of 2 and subsample by 2
**/
int excess;
int lgrdim=0;
bool isSmaller = false;
RowVector size_diff(3); size_diff=0;
RowVector lfpad(3); lfpad=0;
RowVector rtpad(3); rtpad=0;
RowVector limits(3); limits=0;
//Since output is to be resampled, output mm > phantom mm
//Check if any intended dimensions are smaller than phantom, else resize phantom.
for(int i=1;i<=2;i++)
{
size_diff(i) = ph_imdims(i)*ph_voxdims(i) - imdims(i)*voxdims(i);
if(size_diff(i) > 0) isSmaller++;
}
if(isSmaller)
{
if(verbose.value()) cout << "..." << endl;
//Find the largest dimension
if(size_diff(1) > size_diff(2))
lgrdim = 1;
else
lgrdim = 2;
//Resample image by scale that elliminates largest difference
float scale = (ph_imdims(lgrdim)*ph_voxdims(lgrdim))/(imdims(lgrdim)*voxdims(lgrdim));
float stepx = scale / output.xdim();
float stepy = scale / output.ydim();
int sx,sy;
sx = (int) Max(1.0, ( ((float) (output.maxx() - output.minx() + 1.0)) / stepx));
sy = (int) Max(1.0, ( ((float) (output.maxy() - output.miny() + 1.0)) / stepy));
volume<double> output_res(sx,sy,output.zsize());
float fx,fy;
int x1,y1;
for(int z=output.minz(); z<=output.maxz(); z++)
for( fy=0.0, y1=0; y1<sy; y1++, fy += stepy )
for( fx=0.0, x1=0; x1<sx; x1++, fx += stepx )
output_res(x1,y1,z) = output.interpolate(fx,fy,z);
output.reinitialize(output_res);
//New std output:voxels dims are 1
output.setxdim(1); output.setydim(1); output.setzdim(1);
ph_imdims(1) = output.xsize(); ph_imdims(2) = output.ysize(); ph_imdims(3) = output.zsize();
}
//For Z-dir : rtpad pads to bottom; lfpad pads above
for(int i=1;i<=3;i++)
{
//Calculate the extra voxels to be padded
excess = (int)abs(imdims(i)*voxdims(i) - ph_imdims(i)*ph_voxdims(i));
limits(i) = ph_imdims(i) + excess;
if(excess > 0)
{
//For odd excess : pad 1 voxel more on the 'right'
lfpad(i) = floor(excess/2);
if(excess % 2 != 0)
rtpad(i) = floor(excess/2)+1;
else
rtpad(i) = excess/2;
}
}
//output2 is padded version of prev output
volume<double> output2((int)(lfpad(1)+output.xsize()+rtpad(1)),(int)(lfpad(2)+output.ysize()+rtpad(2)),output.zsize()); output2=0;
//Write smaller sized output to padded output2. Offset from origin by lfpad values
for( int z=output.minz(); z <= output.maxz(); z++)
for( int y=output.miny(); y <= output.maxy(); y++)
for( int x=output.minx(); x <= output.maxx(); x++)
output2((int)(x+lfpad(1)),(int)(y+lfpad(2)),z) = output(x,y,z);
if(verbose.value()) cout << "Resampling image..." << endl;
float scalex = voxdims(1)/ph_voxdims(1);
float scaley = voxdims(2)/ph_voxdims(2);
float stepx = scalex / output2.xdim();
float stepy = scaley / output2.ydim();
int sx = (int) Max(1.0, ( ((float) (output2.maxx() - output2.minx() + 1.0)) / stepx));
int sy = (int) Max(1.0, ( ((float) (output2.maxy() - output2.miny() + 1.0)) / stepy));
volume<double> out_res(sx,sy,output2.zsize());
float fx,fy;
int x1,y1;
for( int z=output2.minz(); z<=output2.maxz(); z++ )
for( fy=0.0, y1=0; y1<sy; y1++, fy += stepy )
for( fx=0.0, x1=0; x1<sx; x1++, fx += stepx )
out_res(x1,y1,z) = output2.interpolate(fx,fy,z);
/****************************
Z-Direction RESAMPLING
****************************/
float scalez = voxdims(3)/ph_voxdims(3);
float stepz = scalez / out_res.zdim();
int sz = (int) Max(1.0, ( ((float) (out_res.maxz() - out_res.minz() + 1.0)) / stepz));
volume<double> out_res_z(out_res.xsize(),out_res.ysize(),sz);
float fz;
int z1;
for( fz=0.0, z1=0; z1<sz; z1++, fz += stepz )
for( int y=out_res.miny(); y<=out_res.maxy(); y++ )
for( int x=out_res.minx(); x<=out_res.maxx(); x++ )
out_res_z(x,y,z1) = out_res.interpolate(x,y,fz);
out_res.reinitialize(out_res_z);
//Select number of slices
out_res_z.reinitialize(out_res.xsize(),out_res.ysize(),(int)imdims(3));
out_res.setROIlimits(out_res.minx(),out_res.miny(),zstart,out_res.maxx(),out_res.maxy(),zstart+(int)imdims(3)-1);
out_res.activateROI(); out_res_z = out_res.ROI(); out_res.deactivateROI();
volume<double> output_abs;
output_abs = out_res_z;
/************************
Finalising
### output_abs : final image to be saved
*************/
if(verbose.value()) cout << "Setting image properties..." << endl;
output_abs.setxdim(voxdims(1)); output_abs.setydim(voxdims(2)); output_abs.setzdim(voxdims(3));
if(verbose.value()) cout << "Saving output file(s) '" << opt_output.value() <<".nii.gz'..." << endl;
save_volume(output_abs,opt_output.value()); //add a "_abs" or "_phase" later, maybe?
//option to calc phase? (from fft maybe)
return 0;
}
int main(int argc,char *argv[])
{
Tracer tr("main");
OptionParser options(title, examples);
try
{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(opt_input);
options.add(opt_output);
//Scanner options
options.add(opt_te);
options.add(opt_tr);
options.add(opt_mrpar);
//Resample options
options.add(opt_nx);
options.add(opt_ny);
options.add(opt_nz);
options.add(opt_dx);
options.add(opt_dy);
options.add(opt_dz);
options.add(opt_zstart);
options.add(opt_sigma);
options.add(opt_save_og);
options.add(verbose);
options.add(help);
nonoptarg = options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if( (help.value()) || (!options.check_compulsory_arguments(true)) )
{
options.usage();
exit(EXIT_FAILURE);
}
}
catch(X_OptionError& e)
{
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}
catch(std::exception &e)
{
cerr << e.what() << endl;
}
// Call the local functions
return do_work(argc,argv);
}