forked from Melinda315/WalkLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlp.py
240 lines (224 loc) · 8.85 KB
/
lp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import torch
import torch.nn.functional as F
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import warnings
import numpy as np
from collections import defaultdict
from sklearn.model_selection import KFold
from sklearn.metrics import roc_auc_score
from sklearn.exceptions import UndefinedMetricWarning, ConvergenceWarning
op1=[]
op2=[]
op3=[]
entity_count, relation_count = 0, 0
with open('./PubMed/node.dat','r') as original_meta_file:
for line in original_meta_file:
temp1,temp2,temp3=line.split('\t')
op1.append(temp1)
op2.append(temp2) #name
op3.append(temp3)
def load(emb_file_path):
emb_dict = {}
with open(emb_file_path,'r') as emb_file:
for i, line in enumerate(emb_file):
if i == 0:
train_para = line[:-1]
else:
index, emb = line[:-1].split('\t')
emb_dict[index] = np.array(emb.split()).astype(np.float32)
return train_para, emb_dict
device = torch.device("cuda:0")
emb_file_path = './PubMed/emb.dat'
train_para, emb_dict = load(emb_file_path)
link_test_file = './PubMed/sample.dat'
pos_edges = []
neg_edges = []
with open(link_test_file,'r') as original_meta_file:
for line in original_meta_file:
temp = []
temp1,temp2,temp3=line[:-1].split('\t')
# print(temp3=='1')
temp.append(int(temp1))
temp.append(int(temp2))
if temp3 == '1': pos_edges.append(temp)
if temp3 == '0': neg_edges.append(temp)
pos_edges_tensor = torch.tensor(pos_edges, dtype=torch.long)
neg_edges_tensor = torch.tensor(neg_edges, dtype=torch.long)
node_emb=[]
d2l=dict()
line=0
for key,values in emb_dict.items():
node_emb.append(values)
d2l[key]=line
line=line+1
node_emb = np.array(node_emb)
node_emb = torch.Tensor(node_emb)
class LMNN(nn.Module):
def __init__(self, node_emb, pos_edges_tensor, neg_edges_tensor):
super(LMNN, self).__init__()
self.embeddings = nn.Embedding.from_pretrained(node_emb, freeze=False)
self.margin = 50
self.pos_edges_tensor = pos_edges_tensor
self.neg_edges_tensor = neg_edges_tensor
def decode(self, h_all, idx):
h = h_all
emb_node1 = h[idx[:, 0]]
emb_node2 = h[idx[:, 1]]
# emb_node1 = gain_emb_tensor(h,idx[:, 0].tolist())
# emb_node2 = gain_emb_tensor(h,idx[:, 1].tolist())
#Rai=torch.sum(emb_node1*emb_node2, dim=-1, keepdim=True)
sqdist = emb_node1*emb_node2
sqdist=torch.sum(sqdist,dim=1)
return sqdist
def forward(self):
pos_scores = self.decode(self.embeddings.weight, self.pos_edges_tensor)
neg_scores= self.decode(self.embeddings.weight, self.neg_edges_tensor)
loss = neg_scores - pos_scores +self.margin
#print(pos_scores)
#print(neg_scores)
loss[loss < 0] = 0
loss = torch.sum(loss)
#loss = -torch.mean(torch.log(torch.clamp(torch.sigmoid(Rai - Raj), min=1e-10, max=1.0)))
return loss
model = LMNN(node_emb, pos_edges_tensor, neg_edges_tensor).to(device)
# print(model.get_embedding)
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
for epoch in range(1000):
model.train()
optimizer.zero_grad()
train_loss = model()
loss = train_loss
loss.backward()
optimizer.step()
emb_trained = model.embeddings.weight
emb_trained_list = emb_trained.cpu().detach().numpy()
with open('./PubMed/sample_emb.dat', 'w') as file:
file.write('pubmed41\n')
for i in range(len(op2)):
file.write(f'{i}\t')
file.write(' '.join(emb_trained_list[i].astype(str)))
file.write('\n')
emb_file_path = './PubMed/sample_emb.dat'
train_para, emb_dict = load(emb_file_path)
class MLP_Decoder(nn.Module):
def __init__(self, hdim, nclass):
super(MLP_Decoder, self).__init__()
self.hidden_layer = nn.Linear(hdim,128)
self.relu=nn.ReLU()
self.final_layer = nn.Linear(128, nclass)
self.softmax = nn.Softmax()
self.sigmoid = nn.Sigmoid()
def forward(self, h):
#h= self.hidden_layer(h)
h=self.relu(self.hidden_layer(h))
output = self.sigmoid(self.final_layer(h))
return output
class Disease_MLP(nn.Module):
def __init__(self, disease_dim,n_class):
super(Disease_MLP, self).__init__()
self.decoder = MLP_Decoder(disease_dim, n_class)
def forward(self, dist):
pred= self.decoder(dist)
return pred
def mrrc(pred, label):
n = len(pred)
#print(pred)
#print(label)
sorted_idx = np.argsort(pred)[::-1]
ranks = np.zeros(n)
for i in range(n):
ranks[sorted_idx[i]] = i + 1
pos = np.where(label == 1)[0]
if len(pos) == 0:
return 0
pos_rank = ranks[pos]
return 1.0 / pos_rank
def lp_evaluate(test_file_path, emb_dict):
posi, nega = defaultdict(set), defaultdict(set)
with open(test_file_path, 'r') as test_file:
for line in test_file:
left, right, label = line[:-1].split('\t')
if label=='1':
posi[left].add(right)
elif label=='0':
nega[left].add(right)
edge_embs, edge_labels = defaultdict(list), defaultdict(list)
for left, rights in posi.items():
for right in rights:
edge_embs[left].append(emb_dict[left]*emb_dict[right])
edge_labels[left].append(1)
for left, rights in nega.items():
for right in rights:
edge_embs[left].append(emb_dict[left]*emb_dict[right])
edge_labels[left].append(0)
for node in edge_embs:
edge_embs[node] = np.array(edge_embs[node])
edge_labels[node] = np.array(edge_labels[node])
auc, mrr = cross_validation(edge_embs, edge_labels)
return auc, mrr
def cross_validation(edge_embs, edge_labels):
auc, mrr = [], []
seed_nodes, num_nodes = np.array(list(edge_embs.keys())), len(edge_embs)
#clf = Disease_MLP(768,1).to(device)
seed=1
#optimizer = torch.optim.Adam(clf.parameters(), lr = 0.001)
skf = KFold(n_splits=5, shuffle=True, random_state=seed)
for fold, (train_idx, test_idx) in enumerate(skf.split(np.zeros((num_nodes,1)), np.zeros(num_nodes))):
print(f'Start Evaluation Fold {fold}!')
train_edge_embs, test_edge_embs, train_edge_labels, test_edge_labels = [], [], [], []
for each in train_idx:
train_edge_embs.append(edge_embs[seed_nodes[each]])
train_edge_labels.append(edge_labels[seed_nodes[each]])
for each in test_idx:
test_edge_embs.append(edge_embs[seed_nodes[each]])
test_edge_labels.append(edge_labels[seed_nodes[each]])
train_edge_embs, test_edge_embs, train_edge_labels, test_edge_labels = np.concatenate(train_edge_embs), np.concatenate(test_edge_embs), np.concatenate(train_edge_labels), np.concatenate(test_edge_labels)
best_auc=0
best_mrr=0
clf = Disease_MLP(768,1).to(device)
optimizer = torch.optim.Adam(clf.parameters(), lr = 0.001)
for i in range(1000):
clf.train()
criterion = nn.BCELoss()
pred=clf(torch.tensor(train_edge_embs).to(device)).squeeze()
#criterion = nn.BCEWithLogitsLoss()
#loss = criterion(pred, truth.argmax(dim=1))
train_edge_labels
loss = criterion(pred, torch.tensor(train_edge_labels).to(device).to(torch.float32))
optimizer.zero_grad()
loss.backward()
optimizer.step()
clf.eval()
with torch.no_grad():
#clf.fit(train_edge_embs, train_edge_labels)
preds = clf(torch.tensor(test_edge_embs).to(device))
auc1=roc_auc_score(test_edge_labels, preds.cpu())
confidence = preds.squeeze().cpu()
#mrr1=np.mean(mrrc(np.array(confidence),test_edge_labels))
curr_mrr, conf_num = [], 0
for each in test_idx:
test_edge_conf = np.argsort(-confidence[conf_num:conf_num+len(edge_labels[seed_nodes[each]])])
rank = np.empty_like(test_edge_conf)
rank[test_edge_conf] = np.arange(len(test_edge_conf))
curr_mrr.append(1/(1+np.min(rank[np.argwhere(edge_labels[seed_nodes[each]]==1).flatten()])))
conf_num += len(rank)
mrr1=np.mean(curr_mrr)
if auc1>best_auc:
best_auc=auc1
best_mrr=mrr1
if i+1%500==0:
print("epoch:",i,"loss:",loss.item(),"auc:",best_auc,"mrr:",best_mrr)
auc.append(best_auc)
#print(torch.tensor(test_edge_labels).to(device))
mrr.append(best_mrr)
print(auc)
print(mrr)
return np.mean(auc), np.mean(mrr)
link_test_file= './PubMed/link.dat.test'
link_test_path = f'{link_test_file}'
scores = lp_evaluate(link_test_path, emb_dict)
print(scores)