forked from nextstrain/lassa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
351 lines (329 loc) · 12.5 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Initialize parameters
SEGMENTS = ["S"]
GENOME_SIZE_THRESHOLDS = [1000, 4000] # LASV S segment ~ 3kb and LASV L segment ~ 7kb
MAX_FRAC_N = 0 # Maximum fraction of ambiuous bases allowed
ACCESSIONS_TO_EXCLUDE = [
"MK107912", # this sequences is an outlier with many more bases that do not align
"MK281631", # this sequences has many 'X' amino acids
"MK118006", # this sequences has many 'X' and more bases that do not align
"MT193286", # this sequences has many 'X' and more bases that do not align
"MT193287", # this sequences has many 'X' and more bases that do not align
"K117948 ",# this sequences has many 'X' and more bases that do not align
"MK117981", # this sequences has many 'X' and more bases that do not align
"MK118036", # this sequences has many 'X' and more bases that do not align
"MK118037", # this sequences has many 'X' and more bases that do not align
"MH887756", # this sequences has many 'X' and more bases that do not align
"MH157039", # this sequences has many 'X' and more bases that do not align
"MH053490", # this sequences has many 'X' and more bases that do not align
"MK117951", # this sequences has many 'X' and more bases that do not align
"MK118005", # this sequences has many 'X' and more bases that do not align
"MK118034", # this sequences has many 'X' and more bases that do not align
"MK117850", # this sequences has many 'X' and more bases that do not align
"MK117954", # this sequences has many 'X' and more bases that do not align
"MK117977", # this sequences has many 'X' and more bases that do not align
"MK118013", # more of a borderline one b/c of 'X'
"MK118015", # this sequences has many 'X' and more bases that do not align
"MK118017", # this sequences has many 'X' and more bases that do not align
"MK118032", # this sequences has many 'X' and more bases that do not align
"MH053523", # this sequences has many 'X' and more bases that do not align
"MK118027", # more of a borderline one b/c has N bases instead of stop codon and adds trailing amino acids
]
DMS_WT_SEQ_ID = "Josiah_NC_004296_2018-08-13"
rule all:
input:
auspice = expand("auspice/lassa-{segment}.json", segment=SEGMENTS),
auspice_root_sequence = expand("auspice/lassa-{segment}_root-sequence.json", segment=SEGMENTS)
rule files:
params:
accessions = "config/all_LASV_accessions_081023.txt", # List of accessions to download
reference = "config/LASV_S_reference_NC_004296_RC.gb", # Josiah reference
dropped_strains = "config/dropped_strains.txt",
colors = "config/colors.tsv",
auspice_config = "config/auspice_config.json",
allow_missing_sites = "allowed_missing_sites.txt"
files = rules.files.params
rule download_data:
message:
"""
Processing the following accessions:
- {input.accessions}
"""
input:
accessions = files.accessions
params:
genome_size_threshold_lower = GENOME_SIZE_THRESHOLDS[0],
genome_size_threshold_upper = GENOME_SIZE_THRESHOLDS[1],
desired_segment = SEGMENTS[0],
max_frac_N = MAX_FRAC_N,
accesstions_to_exclude = ACCESSIONS_TO_EXCLUDE,
output:
sequences = "results/unfiltered_{segment}.fasta",
metadata = "results/{segment}_metadata.tsv",
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
log:
"logs/download_{segment}_data.txt"
script:
"scripts/download_NCBI_sequences.py"
rule filter:
message:
"""
Filtering to
- excluding strains in {input.exclude}
"""
input:
sequences = "results/unfiltered_{segment}.fasta",
metadata = "results/{segment}_metadata.tsv",
exclude = files.dropped_strains
output:
sequences = "results/filtered_{segment}.fasta"
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
log:
"logs/filter_{segment}.txt"
shell:
"""
augur filter \
--sequences {input.sequences} \
--metadata {input.metadata} \
--exclude {input.exclude} \
--output {output.sequences}
"""
rule align:
message:
"""
Aligning sequences to {params.reference}
- filling gaps with N
"""
input:
sequences = rules.filter.output.sequences,
output:
alignment = "results/aligned_{segment}.fasta"
params:
reference = files.reference
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
augur align \
--sequences {input.sequences} \
--reference-sequence {params.reference} \
--output {output.alignment} \
--remove-reference \
--fill-gaps
"""
rule tree:
message: "Building tree"
input:
alignment = rules.align.output.alignment
output:
tree = "results/tree_raw_{segment}.nwk"
params:
method = "iqtree"
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
augur tree \
--alignment {input.alignment} \
--output {output.tree} \
--method {params.method}
"""
rule refine:
message:
"""
Refining tree
- estimate timetree
- use {params.coalescent} coalescent timescale
- estimate {params.date_inference} node dates
- fix clock rate at {params.clock_rate}
"""
input:
tree = rules.tree.output.tree,
alignment = rules.align.output,
metadata = "results/{segment}_metadata.tsv",
output:
tree = "results/tree_{segment}.nwk",
node_data = "results/branch_lengths_{segment}.json"
params:
coalescent = "opt",
date_inference = "marginal",
clock_rate = 0.0006
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
augur refine \
--tree {input.tree} \
--alignment {input.alignment} \
--metadata {input.metadata} \
--output-tree {output.tree} \
--output-node-data {output.node_data} \
--timetree \
--coalescent {params.coalescent} \
--clock-rate {params.clock_rate} \
--date-confidence \
--date-inference {params.date_inference}
"""
rule ancestral:
message: "Reconstructing ancestral sequences and mutations"
input:
tree = rules.refine.output.tree,
alignment = rules.align.output
output:
node_data = "results/nt_muts_{segment}.json"
params:
inference = "joint"
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
augur ancestral \
--tree {input.tree} \
--alignment {input.alignment} \
--output-node-data {output.node_data} \
--inference {params.inference}
"""
rule translate:
message: "Translating amino acid sequences"
input:
tree = rules.refine.output.tree,
node_data = rules.ancestral.output.node_data,
reference = files.reference
output:
node_data = "results/aa_muts_{segment}.json",
alignments = expand("results/translations/{{segment}}_{gene}.fasta", gene=["Glycoprotein", "Nucleoprotein"])
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
log:
"logs/translate_{segment}.txt"
shell:
"""
augur translate \
--tree {input.tree} \
--genes Glycoprotein Nucleoprotein \
--ancestral-sequences {input.node_data} \
--reference-sequence {input.reference} \
--output-node-data {output.node_data} \
--alignment-output results/translations/{wildcards.segment}_%GENE.fasta
"""
# Note, this is hardcoded to only make predictions for the GPC gene in the S segment build
# additional 'segment' and 'gene' wildcards would need to be defined to make this more general
rule variant_escape_prediction:
input:
alignment = "results/translations/S_Glycoprotein.fasta"
output:
node_data = "results/dmsa-phenotype/{collection}/{experiment}_escape_prediction.json",
pred_data = "results/dmsa-phenotype/{collection}/{experiment}_escape_prediction.csv"
log:
"logs/{collection}/{experiment}_escape_prediction.txt"
params:
basedir = lambda w: config["dmsa_phenotype_collections"].get(w.collection)['mut_effects_dir'],
dms_wt_seq_id = DMS_WT_SEQ_ID,
mut_effect_col = lambda w: config["dmsa_phenotype_collections"].get(w.collection)['mut_effect_col'],
mutation_col = lambda w: config["dmsa_phenotype_collections"].get(w.collection)['mutation_col'],
mut_effects_df = lambda w: os.path.join(
config["dmsa_phenotype_collections"].get(w.collection)['mut_effects_dir'],
w.experiment
),
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
python my_profiles/dmsa-pred/dmsa_pred.py phenotype-prediction \
--model-type additive \
--alignment {input.alignment} \
--dms-wt-seq-id {params.dms_wt_seq_id} \
--mask-seqs-with-disallowed-aa-subs False \
--min-pred-pheno 0.0 \
--mut-effects-df {params.mut_effects_df} \
--mut-effect-col {params.mut_effect_col} \
--mutation-col {params.mutation_col} \
--experiment-label {wildcards.experiment} \
--output-json {output.node_data} \
--output-df {output.pred_data} 2>&1 | tee {log}
"""
rule traits:
message: "Inferring ancestral traits for {params.columns!s}"
input:
tree = rules.refine.output.tree,
metadata = "results/{segment}_metadata.tsv",
output:
node_data = "results/traits_{segment}.json",
params:
columns = "country"
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
augur traits \
--tree {input.tree} \
--metadata {input.metadata} \
--output-node-data {output.node_data} \
--columns {params.columns} \
--confidence
"""
def _get_variant_escape_node_data(wildcards):
inputs=[]
wildcards_dict = dict(wildcards)
import glob
for collection_name, collection_dict in config['dmsa_phenotype_collections'].items():
# run the predictions using every csv in the glob
requested_files = expand(
rules.variant_escape_prediction.output.node_data,
collection=collection_name,
experiment=[
os.path.basename(fp)
for fp in glob.glob(collection_dict['mut_effects_dir']+"/*.csv")
],
**wildcards_dict
)
inputs.extend(requested_files)
return inputs
rule auspice_config:
message: "Getting auspice config for modification"
input:
default_auspice_config = files.auspice_config
output:
"results/dmsa_modified_auspice_config.json"
params:
path_config = workflow.overwrite_configfiles[0]
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
python my_profiles/dmsa-pred/modify_auspice_config.py \
--auspice-config-path {input.default_auspice_config} \
--snake-config-path {params.path_config} \
--output-config-path {output}
"""
rule export:
message: "Exporting data files for for auspice"
input:
tree = rules.refine.output.tree,
metadata = "results/{segment}_metadata.tsv",
branch_lengths = rules.refine.output.node_data,
traits = rules.traits.output.node_data,
escape_predictions = _get_variant_escape_node_data,
nt_muts = rules.ancestral.output.node_data,
aa_muts = rules.translate.output.node_data,
colors = files.colors,
auspice_config = files.auspice_config
output:
auspice_json = "auspice/lassa-{segment}.json",
root_sequence_json = "auspice/lassa-{segment}_root-sequence.json"
log:
"logs/export_{segment}.txt"
conda:
"my_profiles/dmsa-pred/dmsa_env.yaml"
shell:
"""
augur export v2 \
--tree {input.tree} \
--metadata {input.metadata} \
--node-data {input.branch_lengths} {input.traits} {input.nt_muts} {input.aa_muts} {input.escape_predictions} \
--include-root-sequence \
--colors {input.colors} \
--auspice-config {input.auspice_config} \
--output {output.auspice_json} 2>&1 | tee {log}
"""