-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathenvs.py
534 lines (436 loc) · 17.4 KB
/
envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from collections import OrderedDict, deque
from typing import Any, NamedTuple
import os
import dm_env
import numpy as np
from dm_control import suite
from dm_control.suite.wrappers import action_scale, pixels
from dm_env import StepType, specs
import custom_dmc_tasks as cdmc
import gym
import pickle
class ExtendedTimeStep(NamedTuple):
step_type: Any
reward: Any
discount: Any
observation: Any
action: Any
def first(self):
return self.step_type == StepType.FIRST
def mid(self):
return self.step_type == StepType.MID
def last(self):
return self.step_type == StepType.LAST
def __getitem__(self, attr):
return getattr(self, attr)
class FlattenJacoObservationWrapper(dm_env.Environment):
def __init__(self, env):
self._env = env
self._obs_spec = OrderedDict()
wrapped_obs_spec = env.observation_spec().copy()
if 'front_close' in wrapped_obs_spec:
spec = wrapped_obs_spec['front_close']
# drop batch dim
self._obs_spec['pixels'] = specs.BoundedArray(shape=spec.shape[1:],
dtype=spec.dtype,
minimum=spec.minimum,
maximum=spec.maximum,
name='pixels')
wrapped_obs_spec.pop('front_close')
for key, spec in wrapped_obs_spec.items():
assert spec.dtype == np.float64
assert type(spec) == specs.Array
dim = np.sum(
np.fromiter((np.int(np.prod(spec.shape))
for spec in wrapped_obs_spec.values()), np.int32))
self._obs_spec['observations'] = specs.Array(shape=(dim,),
dtype=np.float32,
name='observations')
def _transform_observation(self, time_step):
obs = OrderedDict()
if 'front_close' in time_step.observation:
pixels = time_step.observation['front_close']
time_step.observation.pop('front_close')
pixels = np.squeeze(pixels)
obs['pixels'] = pixels
features = []
for feature in time_step.observation.values():
features.append(feature.ravel())
obs['observations'] = np.concatenate(features, axis=0)
return time_step._replace(observation=obs)
def reset(self):
time_step = self._env.reset()
return self._transform_observation(time_step)
def step(self, action):
time_step = self._env.step(action)
return self._transform_observation(time_step)
def observation_spec(self):
return self._obs_spec
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class ActionRepeatWrapper(dm_env.Environment):
def __init__(self, env, num_repeats):
self._env = env
self._num_repeats = num_repeats
def step(self, action):
reward = 0.0
discount = 1.0
for i in range(self._num_repeats):
time_step = self._env.step(action)
reward += (time_step.reward or 0.0) * discount
discount *= time_step.discount
if time_step.last():
break
return time_step._replace(reward=reward, discount=discount)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._env.action_spec()
def reset(self):
return self._env.reset()
def __getattr__(self, name):
return getattr(self._env, name)
class FrameStackWrapper(dm_env.Environment):
def __init__(self, env, num_frames, pixels_key='pixels'):
self._env = env
self._num_frames = num_frames
self._frames = deque([], maxlen=num_frames)
self._pixels_key = pixels_key
wrapped_obs_spec = env.observation_spec()
assert pixels_key in wrapped_obs_spec
pixels_shape = wrapped_obs_spec[pixels_key].shape
# remove batch dim
if len(pixels_shape) == 4:
pixels_shape = pixels_shape[1:]
self._obs_spec = specs.BoundedArray(shape=np.concatenate(
[[pixels_shape[2] * num_frames], pixels_shape[:2]], axis=0),
dtype=np.uint8,
minimum=0,
maximum=255,
name='observation')
def _transform_observation(self, time_step):
assert len(self._frames) == self._num_frames
obs = np.concatenate(list(self._frames), axis=0)
return time_step._replace(observation=obs)
def _extract_pixels(self, time_step):
pixels = time_step.observation[self._pixels_key]
# remove batch dim
if len(pixels.shape) == 4:
pixels = pixels[0]
return pixels.transpose(2, 0, 1).copy()
def reset(self):
time_step = self._env.reset()
pixels = self._extract_pixels(time_step)
for _ in range(self._num_frames):
self._frames.append(pixels)
return self._transform_observation(time_step)
def step(self, action):
time_step = self._env.step(action)
pixels = self._extract_pixels(time_step)
self._frames.append(pixels)
return self._transform_observation(time_step)
def observation_spec(self):
return self._obs_spec
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class ActionDTypeWrapper(dm_env.Environment):
def __init__(self, env, dtype):
self._env = env
wrapped_action_spec = env.action_spec()
self._action_spec = specs.BoundedArray(wrapped_action_spec.shape,
dtype,
wrapped_action_spec.minimum,
wrapped_action_spec.maximum,
'action')
def step(self, action):
action = action.astype(self._env.action_spec().dtype)
return self._env.step(action)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._action_spec
def reset(self):
return self._env.reset()
def __getattr__(self, name):
return getattr(self._env, name)
class ObservationDTypeWrapper(dm_env.Environment):
def __init__(self, env, dtype):
self._env = env
self._dtype = dtype
wrapped_obs_spec = env.observation_spec()['observations']
self._obs_spec = specs.Array(wrapped_obs_spec.shape, dtype,
'observation')
def _transform_observation(self, time_step):
obs = time_step.observation['observations'].astype(self._dtype)
return time_step._replace(observation=obs)
def reset(self):
time_step = self._env.reset()
return self._transform_observation(time_step)
def step(self, action):
time_step = self._env.step(action)
return self._transform_observation(time_step)
def observation_spec(self):
return self._obs_spec
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class ExtendedTimeStepWrapper(dm_env.Environment):
def __init__(self, env):
self._env = env
def reset(self):
time_step = self._env.reset()
return self._augment_time_step(time_step)
def step(self, action):
time_step = self._env.step(action)
return self._augment_time_step(time_step, action)
def _augment_time_step(self, time_step, action=None):
if action is None:
action_spec = self.action_spec()
action = np.zeros(action_spec.shape, dtype=action_spec.dtype)
return ExtendedTimeStep(observation=time_step.observation,
step_type=time_step.step_type,
action=action,
reward=time_step.reward or 0.0,
discount=time_step.discount or 1.0)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class DMC:
def __init__(self, env):
self._env = env
self._ignored_keys = []
@property
def obs_space(self):
spaces = {
'observation': self._env.observation_spec(),
'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool),
}
return spaces
@property
def act_space(self):
spec = self._env.action_spec()
action = gym.spaces.Box((spec.minimum)*spec.shape[0], (spec.maximum)*spec.shape[0], shape=spec.shape, dtype=np.float32)
return {'action': action}
def step(self, action):
time_step = self._env.step(action)
assert time_step.discount in (0, 1)
obs = {
'reward': time_step.reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'observation': time_step.observation,
'action' : action,
'discount': time_step.discount
}
return obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'observation': time_step.observation,
'action' : np.zeros_like(self.act_space['action'].sample()),
'discount': time_step.discount
}
return obs
def __getattr__(self, name):
if name == 'obs_space':
return self.obs_space
if name == 'act_space':
return self.act_space
return getattr(self._env, name)
class SparseMetaWorld:
def __init__(
self,
name,
seed=None,
action_repeat=1,
size=(64, 64),
camera=None,
):
import metaworld
os.environ["MUJOCO_GL"] = "egl"
# Construct the benchmark, sampling tasks
self.ml1 = metaworld.ML1(f'{name}-v2', seed=seed)
# Create an environment with task `pick_place`
env_cls = self.ml1.train_classes[f'{name}-v2']
self._env = env_cls()
self._env._freeze_rand_vec = False
self._size = size
self._action_repeat = action_repeat
self._camera = camera
self._seed = seed
self._tasks = self.ml1.test_tasks
if name == 'reach':
with open(f'../../../mw_tasks/reach_harder/{seed}.pickle', 'rb') as handle:
self._tasks = pickle.load(handle)
def observation_spec(self,):
v = self.obs_space['observation']
return specs.BoundedArray(name='observation', shape=v.shape, dtype=v.dtype, minimum=v.low, maximum=v.high)
def action_spec(self,):
return specs.BoundedArray(name='action',
shape=self._env.action_space.shape, dtype=self._env.action_space.dtype, minimum=self._env.action_space.low, maximum=self._env.action_space.high)
@property
def obs_space(self):
spaces = {
"observation": gym.spaces.Box(0, 255, (3,) + self._size, dtype=np.uint8),
"reward": gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
"is_first": gym.spaces.Box(0, 1, (), dtype=bool),
"is_last": gym.spaces.Box(0, 1, (), dtype=bool),
"is_terminal": gym.spaces.Box(0, 1, (), dtype=bool),
"state": self._env.observation_space,
"success": gym.spaces.Box(0, 1, (), dtype=bool),
}
return spaces
@property
def act_space(self):
action = self._env.action_space
return {"action": action}
def step(self, action):
reward = 0.0
success = 0.0
for _ in range(self._action_repeat):
state, rew, done, info = self._env.step(action)
success += float(info["success"])
reward += float(info["success"])
success = min(success, 1.0)
assert success in [0.0, 1.0]
obs = {
"reward": reward,
"is_first": False,
"is_last": False, # will be handled by timelimit wrapper
"is_terminal": False, # will be handled by per_episode function
"observation": self._env.sim.render(
*self._size, mode="offscreen", camera_name=self._camera
).transpose(2, 0, 1).copy(),
"state": state,
'action' : action,
"success": success,
'discount' : 1
}
return obs
def reset(self):
# Set task to ML1 choices
task_id = np.random.randint(0,len(self._tasks))
return self.reset_with_task_id(task_id)
def reset_with_task_id(self, task_id):
if self._camera == "corner2":
self._env.model.cam_pos[2][:] = [0.75, 0.075, 0.7]
# Set task to ML1 choices
task = self._tasks[task_id]
self._env.set_task(task)
state = self._env.reset()
# This ensures the first observation is correct in the renderer
self._env.sim.render(*self._size, mode="offscreen", camera_name=self._camera)
for site in self._env._target_site_config:
self._env._set_pos_site(*site)
self._env.sim._render_context_offscreen._set_mujoco_buffers()
obs = {
"reward": 0.0,
"is_first": True,
"is_last": False,
"is_terminal": False,
"observation": self._env.sim.render(
*self._size, mode="offscreen", camera_name=self._camera
).transpose(2, 0, 1).copy(),
"state": state,
'action' : np.zeros_like(self.act_space['action'].sample()),
"success": False,
'discount' : 1
}
return obs
def __getattr__(self, name):
if name == 'obs_space':
return self.obs_space
if name == 'act_space':
return self.act_space
return getattr(self._env, name)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs = self._env.step(action)
self._step += 1
if self._duration and self._step >= self._duration:
obs['is_last'] = True
self._step = None
return obs
def reset(self):
self._step = 0
return self._env.reset()
def reset_with_task_id(self, task_id):
self._step = 0
return self._env.reset_with_task_id(task_id)
def _make_jaco(obs_type, domain, task, frame_stack, action_repeat, seed, img_size, exorl=False):
env = cdmc.make_jaco(task, obs_type, seed, img_size, exorl=exorl)
env = ActionDTypeWrapper(env, np.float32)
env = ActionRepeatWrapper(env, action_repeat)
env = FlattenJacoObservationWrapper(env)
env._size = (img_size, img_size)
return env
def _make_dmc(obs_type, domain, task, frame_stack, action_repeat, seed, img_size, exorl=False):
visualize_reward = False
if (domain, task) in suite.ALL_TASKS:
env = suite.load(domain,
task,
task_kwargs=dict(random=seed),
environment_kwargs=dict(flat_observation=True),
visualize_reward=visualize_reward)
else:
env = cdmc.make(domain,
task,
task_kwargs=dict(random=seed),
environment_kwargs=dict(flat_observation=True),
visualize_reward=visualize_reward)
env = ActionDTypeWrapper(env, np.float32)
env = ActionRepeatWrapper(env, action_repeat)
if obs_type == 'pixels':
# zoom in camera for quadruped
camera_id = dict(quadruped=2).get(domain, 0)
render_kwargs = dict(height=img_size, width=img_size, camera_id=camera_id)
env = pixels.Wrapper(env,
pixels_only=True,
render_kwargs=render_kwargs)
env._size = (img_size, img_size)
env._camera = camera_id
return env
def make(name, obs_type, frame_stack, action_repeat, seed, img_size=84, exorl=False):
assert obs_type in ['states', 'pixels']
domain, task = name.split('_', 1)
if domain == 'mw':
return TimeLimit(SparseMetaWorld(task, seed=seed, action_repeat=action_repeat, size=(img_size,img_size), camera='corner2'), 250)
else:
domain = dict(cup='ball_in_cup', point='point_mass').get(domain, domain)
make_fn = _make_jaco if domain == 'jaco' else _make_dmc
env = make_fn(obs_type, domain, task, frame_stack, action_repeat, seed, img_size, exorl=exorl)
if obs_type == 'pixels':
env = FrameStackWrapper(env, frame_stack)
else:
env = ObservationDTypeWrapper(env, np.float32)
env = action_scale.Wrapper(env, minimum=-1.0, maximum=+1.0)
env = ExtendedTimeStepWrapper(env)
return DMC(env)