-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpretrain.py
296 lines (255 loc) · 11.6 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
os.environ['MUJOCO_GL'] = 'egl'
from pathlib import Path
import hydra
import numpy as np
import torch
import wandb
from dm_env import specs
import envs
import utils
from logger import Logger
from replay import ReplayBuffer, make_replay_loader
torch.backends.cudnn.benchmark = True
from dmc_benchmark import PRIMAL_TASKS
def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg):
cfg.obs_type = obs_type
cfg.obs_shape = obs_spec.shape
cfg.action_shape = action_spec.shape
cfg.num_expl_steps = num_expl_steps
return hydra.utils.instantiate(cfg)
def make_agent(obs_space, action_spec, cur_config, cfg):
from copy import deepcopy
cur_config = deepcopy(cur_config)
del cur_config.agent
return hydra.utils.instantiate(cfg, cfg=cur_config, obs_space=obs_space, act_spec=action_spec)
class Workspace:
def __init__(self, cfg, savedir=None, workdir=None):
self.workdir = Path.cwd() if workdir is None else workdir
print(f'workspace: {self.workdir}')
self.cfg = cfg
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
# create logger
self.logger = Logger(self.workdir,
use_tb=cfg.use_tb,
use_wandb=cfg.use_wandb)
# create envs
task = cfg.task if cfg.task != 'none' else PRIMAL_TASKS[self.cfg.domain] # -> which is the URLB default
frame_stack = 1
img_size = 64
self.train_env = envs.make(task, cfg.obs_type, frame_stack,
cfg.action_repeat, cfg.seed, img_size=img_size)
self.eval_env = envs.make(task, cfg.obs_type, frame_stack,
cfg.action_repeat, cfg.seed, img_size=img_size)
# # create agent
self.agent = make_agent(self.train_env.obs_space,
self.train_env.action_spec(), cfg, cfg.agent)
# get meta specs
meta_specs = self.agent.get_meta_specs()
# create replay buffer
data_specs = (self.train_env.observation_spec(),
self.train_env.action_spec(),
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
# create replay storage
self.replay_storage = ReplayBuffer(data_specs, meta_specs,
self.workdir / 'buffer',
length=cfg.batch_length, **cfg.replay,
device=cfg.device)
# create replay buffer
self.replay_loader = make_replay_loader(self.replay_storage,
cfg.batch_size, #
)
self._replay_iter = None
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
@property
def replay_iter(self):
if self._replay_iter is None:
self._replay_iter = iter(self.replay_loader)
return self._replay_iter
def eval(self):
step, episode, total_reward = 0, 0, 0
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
meta = self.agent.init_meta()
while eval_until_episode(episode):
time_step = self.eval_env.reset()
agent_state = None
while not time_step['is_last']:
with torch.no_grad(), utils.eval_mode(self.agent):
action, agent_state = self.agent.act(time_step, # time_step.observation
meta,
self.global_step,
eval_mode=True,
state=agent_state)
time_step = self.eval_env.step(action)
total_reward += time_step['reward']
step += 1
episode += 1
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
log('episode_reward', total_reward / episode)
log('episode_length', step * self.cfg.action_repeat / episode)
log('episode', self.global_episode)
log('step', self.global_step)
def train(self):
# predicates
train_until_step = utils.Until(self.cfg.num_train_frames,
self.cfg.action_repeat)
seed_until_step = utils.Until(self.cfg.num_seed_frames,
self.cfg.action_repeat)
eval_every_step = utils.Every(self.cfg.eval_every_frames,
self.cfg.action_repeat)
train_every_n_steps = self.cfg.train_every_actions // self.cfg.action_repeat
should_train_step = utils.Every(train_every_n_steps * self.cfg.action_repeat,
self.cfg.action_repeat)
should_log_scalars = utils.Every(self.cfg.log_every_frames,
self.cfg.action_repeat)
should_log_recon = utils.Every(self.cfg.recon_every_frames,
self.cfg.action_repeat)
episode_step, episode_reward = 0, 0
time_step = self.train_env.reset()
agent_state = None
meta = self.agent.init_meta()
self.replay_storage.add(time_step, meta)
metrics = None
while train_until_step(self.global_step):
if time_step['is_last']:
self._global_episode += 1
# wait until all the metrics schema is populated
if metrics is not None:
# log stats
elapsed_time, total_time = self.timer.reset()
episode_frame = episode_step * self.cfg.action_repeat
with self.logger.log_and_dump_ctx(self.global_frame,
ty='train') as log:
log('fps', episode_frame / elapsed_time)
log('total_time', total_time)
log('episode_reward', episode_reward)
log('episode_length', episode_frame)
log('episode', self.global_episode)
log('buffer_size', len(self.replay_storage))
log('step', self.global_step)
# save last model
self.save_last_model()
# reset env
time_step = self.train_env.reset()
agent_state = None # Resetting agent's latent state
meta = self.agent.init_meta()
self.replay_storage.add(time_step, meta)
# try to save snapshot
if self.global_frame in self.cfg.snapshots:
self.save_snapshot()
episode_step = 0
episode_reward = 0
# try to evaluate
if eval_every_step(self.global_step) and self.global_step > 0:
self.logger.log('eval_total_time', self.timer.total_time(),
self.global_frame)
self.eval()
meta = self.agent.update_meta(meta, self.global_step, time_step)
# sample action
with torch.no_grad(), utils.eval_mode(self.agent):
if seed_until_step(self.global_step):
action = self.train_env.act_space['action'].sample()
else:
action, agent_state = self.agent.act(time_step, # time_step.observation
meta,
self.global_step,
eval_mode=False,
state=agent_state)
# try to update the agent
if not seed_until_step(self.global_step):
if should_train_step(self.global_step):
metrics = self.agent.update(next(self.replay_iter), self.global_step)[1]
if should_log_scalars(self.global_step):
self.logger.log_metrics(metrics, self.global_frame, ty='train')
if self.global_step > 0 and should_log_recon(self.global_step):
videos = self.agent.report(next(self.replay_iter))
self.logger.log_video(videos, self.global_frame)
# take env step
time_step = self.train_env.step(action)
episode_reward += time_step['reward']
self.replay_storage.add(time_step, meta)
episode_step += 1
self._global_step += 1
@utils.retry
def save_snapshot(self):
snapshot = self.get_snapshot_dir() / f'snapshot_{self.global_frame}.pt'
keys_to_save = ['agent', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def setup_wandb(self):
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.domain, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name + "_pretrain", group=cfg.agent.name, name=exp_name)
wandb.config.update(cfg)
self.wandb_run_id = wandb.run.id
@utils.retry
def save_last_model(self):
snapshot = self.root_dir / 'last_snapshot.pt'
if snapshot.is_file():
temp = Path(str(snapshot).replace("last_snapshot.pt", "second_last_snapshot.pt"))
os.replace(snapshot, temp)
keys_to_save = ['agent', '_global_step', '_global_episode']
if self.cfg.use_wandb:
keys_to_save.append('wandb_run_id')
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def load_snapshot(self):
try:
snapshot = self.root_dir / 'last_snapshot.pt'
with snapshot.open('rb') as f:
payload = torch.load(f)
except:
snapshot = self.root_dir / 'second_last_snapshot.pt'
with snapshot.open('rb') as f:
payload = torch.load(f)
for k,v in payload.items():
setattr(self, k, v)
if k == 'wandb_run_id':
assert wandb.run is None
cfg = self.cfg
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.domain, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project=cfg.project_name + "_pretrain", group=cfg.agent.name, name=exp_name, id=v, resume="must")
def get_snapshot_dir(self):
snap_dir = self.cfg.snapshot_dir
snapshot_dir = self.workdir / Path(snap_dir)
snapshot_dir.mkdir(exist_ok=True, parents=True)
return snapshot_dir
@hydra.main(config_path='.', config_name='pretrain')
def main(cfg):
root_dir = Path.cwd()
workspace = Workspace(cfg)
workspace.root_dir = root_dir
snapshot = workspace.root_dir / 'last_snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot()
if cfg.use_wandb and wandb.run is None:
# otherwise it was resumed
workspace.setup_wandb()
workspace.train()
if __name__ == '__main__':
main()