-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathreplay.py
232 lines (210 loc) · 7.76 KB
/
replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import collections
import datetime
import io
import pathlib
import uuid
import numpy as np
import random
from torch.utils.data import IterableDataset, DataLoader
import torch
import utils
class ReplayBuffer(IterableDataset):
def __init__(
self, data_specs, meta_specs, directory, length=20, capacity=0, ongoing=False, minlen=1, maxlen=0,
prioritize_ends=False, device='cuda', load_first=False):
self._directory = pathlib.Path(directory).expanduser()
self._directory.mkdir(parents=True, exist_ok=True)
self._capacity = capacity
self._ongoing = ongoing
self._minlen = minlen
self._maxlen = maxlen
self._prioritize_ends = prioritize_ends
self._random = np.random.RandomState()
# filename -> key -> value_sequence
self._complete_eps = load_episodes(self._directory, capacity, minlen, load_first=load_first)
# worker -> key -> value_sequence
self._ongoing_eps = collections.defaultdict(
lambda: collections.defaultdict(list))
self._total_episodes, self._total_steps = count_episodes(directory)
self._loaded_episodes = len(self._complete_eps)
self._loaded_steps = sum(eplen(x) for x in self._complete_eps.values())
self._length = length
self._data_specs = data_specs
self._meta_specs = meta_specs
self.device = device
try:
assert self._minlen <= self._length <= self._maxlen
except:
print("Incosistency between min/max/length in the replay buffer. Defaulting to (length): ", length)
self._minlen = self._maxlen = self._length = length
def __len__(self):
return self._total_steps
@property
def stats(self):
return {
'total_steps': self._total_steps,
'total_episodes': self._total_episodes,
'loaded_steps': self._loaded_steps,
'loaded_episodes': self._loaded_episodes,
}
def add(self, time_step, meta, worker=0):
episode = self._ongoing_eps[worker]
for spec in self._data_specs:
value = time_step[spec.name]
if np.isscalar(value):
value = np.full(spec.shape, value, spec.dtype)
assert spec.shape == value.shape and spec.dtype == value.dtype
episode[spec.name].append(value)
for spec in self._meta_specs:
value = meta[spec.name]
if np.isscalar(value):
value = np.full(spec.shape, value, spec.dtype)
assert spec.shape == value.shape and spec.dtype == value.dtype
episode[spec.name].append(value)
if type(time_step) == dict:
if time_step['is_last']:
self.add_episode(episode)
episode.clear()
else:
if time_step.last():
self.add_episode(episode)
episode.clear()
def add_episode(self, episode):
length = eplen(episode)
if length < self._minlen:
print(f'Skipping short episode of length {length}.')
return
self._total_steps += length
self._loaded_steps += length
self._total_episodes += 1
self._loaded_episodes += 1
episode = {key: convert(value) for key, value in episode.items()}
filename = save_episode(self._directory, episode)
self._complete_eps[str(filename)] = episode
self._enforce_limit()
def __iter__(self):
sequence = self._sample_sequence()
while True:
chunk = collections.defaultdict(list)
added = 0
while added < self._length:
needed = self._length - added
adding = {k: v[:needed] for k, v in sequence.items()}
sequence = {k: v[needed:] for k, v in sequence.items()}
for key, value in adding.items():
chunk[key].append(value)
added += len(adding['action'])
if len(sequence['action']) < 1:
sequence = self._sample_sequence()
chunk = {k: np.concatenate(v) for k, v in chunk.items()}
chunk['is_terminal'] = chunk['discount'] == 0
chunk = {k : torch.as_tensor(np.copy(v), device=self.device) for k, v in chunk.items()}
yield chunk
def _sample_sequence(self):
episodes = list(self._complete_eps.values())
if self._ongoing:
episodes += [
x for x in self._ongoing_eps.values()
if eplen(x) >= self._minlen]
episode = self._random.choice(episodes)
total = len(episode['action'])
length = total
if self._maxlen:
length = min(length, self._maxlen)
# Randomize length to avoid all chunks ending at the same time in case the
# episodes are all of the same length.
length -= np.random.randint(self._minlen)
length = max(self._minlen, length)
upper = total - length + 1
if self._prioritize_ends:
upper += self._minlen
index = min(self._random.randint(upper), total - length)
sequence = {
k: convert(v[index: index + length])
for k, v in episode.items() if not k.startswith('log_')}
sequence['is_first'] = np.zeros(len(sequence['action']), np.bool)
sequence['is_first'][0] = True
if self._maxlen:
assert self._minlen <= len(sequence['action']) <= self._maxlen
return sequence
def _enforce_limit(self):
if not self._capacity:
return
while self._loaded_episodes > 1 and self._loaded_steps > self._capacity:
# Relying on Python preserving the insertion order of dicts.
oldest, episode = next(iter(self._complete_eps.items()))
self._loaded_steps -= eplen(episode)
self._loaded_episodes -= 1
del self._complete_eps[oldest]
def count_episodes(directory):
filenames = list(directory.glob('*.npz'))
num_episodes = len(filenames)
if len(filenames) > 0 and "-" in str(filenames[0]):
num_steps = sum(int(str(n).split('-')[-1][:-4]) - 1 for n in filenames)
else:
num_steps = sum(int(str(n).split('_')[-1][:-4]) - 1 for n in filenames)
return num_episodes, num_steps
@utils.retry
def save_episode(directory, episode):
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
identifier = str(uuid.uuid4().hex)
length = eplen(episode)
filename = directory / f'{timestamp}-{identifier}-{length}.npz'
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open('wb') as f2:
f2.write(f1.read())
return filename
def load_episodes(directory, capacity=None, minlen=1, load_first=False):
# The returned directory from filenames to episodes is guaranteed to be in
# temporally sorted order.
filenames = sorted(directory.glob('*.npz'))
if capacity:
num_steps = 0
num_episodes = 0
ordered_filenames = filenames if load_first else reversed(filenames)
for filename in ordered_filenames:
if "-" in str(filename):
length = int(str(filename).split('-')[-1][:-4])
else:
length = int(str(filename).split('_')[-1][:-4])
num_steps += length
num_episodes += 1
if num_steps >= capacity:
break
if load_first:
filenames = filenames[:num_episodes]
else:
filenames = filenames[-num_episodes:]
episodes = {}
for filename in filenames:
try:
with filename.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f'Could not load episode {str(filename)}: {e}')
continue
episodes[str(filename)] = episode
return episodes
def convert(value):
value = np.array(value)
if np.issubdtype(value.dtype, np.floating):
return value.astype(np.float32)
elif np.issubdtype(value.dtype, np.signedinteger):
return value.astype(np.int32)
elif np.issubdtype(value.dtype, np.uint8):
return value.astype(np.uint8)
return value
def eplen(episode):
return len(episode['action']) - 1
def _worker_init_fn(worker_id):
seed = np.random.get_state()[1][0] + worker_id
np.random.seed(seed)
random.seed(seed)
def make_replay_loader(buffer, batch_size):
return DataLoader(buffer,
batch_size=batch_size,
drop_last=True,
)