-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_dataset.py
140 lines (106 loc) · 4.05 KB
/
process_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import io
import os
from tqdm import tqdm
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
from pathlib import Path
from collections import OrderedDict
import hydra
import numpy as np
import torch
import tools.utils as utils
from tools.replay import load_episode
torch.backends.cudnn.benchmark = True
if os.name == "nt":
import msvcrt
def portable_lock(fp):
fp.seek(0)
msvcrt.locking(fp, msvcrt.LK_LOCK, 1)
def portable_unlock(fp):
fp.seek(0)
msvcrt.locking(fp, msvcrt.LK_UNLCK, 1)
else:
import fcntl
def portable_lock(fp):
fcntl.flock(fp, fcntl.LOCK_EX | fcntl.LOCK_NB)
def portable_unlock(fp):
fcntl.flock(fp, fcntl.LOCK_UN)
class Locker:
def __init__(self, lock_name):
# e.g. lock_name = "./lockfile.lck"
self.lock_name = lock_name
def __enter__(self,):
open_mode = os.O_RDWR | os.O_CREAT | os.O_TRUNC
self.fd = os.open(self.lock_name, open_mode)
portable_lock(self.fd)
def __exit__(self, _type, value, tb):
portable_unlock(self.fd)
os.close(self.fd)
try:
os.remove(self.lock_name)
except:
pass
class Workspace:
def __init__(self, cfg, savedir=None, workdir=None,):
self.workdir = Path.cwd() if workdir is None else workdir
print(f'workspace: {self.workdir}')
assert int(cfg.viclip_encode) == 1, "encoding only one (video or img)"
if cfg.viclip_encode:
self.key_to_add = 'clip_video'
self.key_to_process = getattr(cfg, 'key_to_process', 'observation')
self.cfg = cfg
self.device = torch.device(cfg.device)
# create envs
task = cfg.task
self.task = task
img_size = cfg.img_size
import envs.main as envs
self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, device='cuda')
self.dataset_path = Path(cfg.dataset_dir)
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
def process(self):
filenames = sorted(self.dataset_path.glob('**/*.npz'))
print(f"Found {len(filenames)} files")
episodes_to_process = {}
for idx, fname in tqdm(enumerate(filenames)):
lockname = str(fname.absolute()) + ".lck"
try:
with Locker(lockname):
episode = load_episode(fname)
# validate before continuing
if type(episode[self.key_to_add]) == np.ndarray and episode[self.key_to_add].size > 1 and episode[self.key_to_add].shape[0] == episode[self.key_to_process].shape[0]:
continue
else:
del episode[self.key_to_add]
add_data = self.train_env.process_episode(episode[self.key_to_process]) # .cpu().numpy()
if idx == 0:
print(add_data.shape)
episode[self.key_to_add] = add_data
# save episode
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with fname.open('wb') as f2:
f2.write(f1.read())
except BlockingIOError:
print(f"File busy: {str(fname)}")
continue
def start_processing(cfg, savedir, workdir):
from process_dataset import Workspace as W
root_dir = Path.cwd()
cfg.workdir = str(root_dir)
workspace = W(cfg, savedir, workdir)
workspace.root_dir = root_dir
snapshot = workspace.root_dir / 'last_snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot(workspace.root_dir)
workspace.process()
@hydra.main(config_path='.', config_name='process_dataset')
def main(cfg):
start_processing(cfg, None, None)
if __name__ == '__main__':
main()