-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·472 lines (402 loc) · 21.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import copy
import glob
import os
import time
from collections import deque
import gym
import numpy as np
import torch
import torch.distributions as D
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from exploration import algo, utils
from exploration.arguments import get_args
from exploration.envs import make_vec_envs
from exploration.model import Policy
from exploration.storage import RolloutStorage
from exploration.models import *
from stable_baselines3.common.running_mean_std import RunningMeanStd
import exploration.environments
from exploration.algo.random import RandomAgent, RandomPolicy
from tensorboardX import SummaryWriter
def main():
# Setup
args = get_args()
# warnings
if args.use_bn:
print("Using BatchNorm in the model")
if args.use_ln:
print("Using LayerNorm in the model")
#
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
log_dir = os.path.expanduser(args.log_dir)
eval_log_dir = log_dir + "_eval"
utils.cleanup_log_dir(log_dir)
utils.cleanup_log_dir(eval_log_dir)
writer = SummaryWriter(logdir=log_dir)
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
# Environment and Policy
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, device, False)
train_model = False
is_vision = len(envs.observation_space.shape) > 1
if args.algo == 'random':
actor_critic = RandomPolicy(envs, args.num_processes)
else:
actor_critic = Policy(
envs.observation_space,
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy})
actor_critic.to(device)
# Algorithm
if args.algo in ['ppo-lbs']:
obs_dim = envs.observation_space.shape
discrete_action = envs.action_space.__class__.__name__ == "Discrete"
if envs.action_space.__class__.__name__ == "Discrete":
act_dim = envs.action_space.n
elif envs.action_space.__class__.__name__ == "Box":
act_dim = envs.action_space.shape[0]
elif envs.action_space.__class__.__name__ == "MultiBinary":
act_dim = envs.action_space.shape[0]
else:
raise NotImplementedError
intr_ret_rms = RunningMeanStd()
intr_ret = np.zeros((args.num_processes, 1))
if args.use_dones:
ext_coeff = 1. # 1 # Sparse tasks: 1000
int_coeff = 1e-5 # 0.001 or 0.01
else:
ext_coeff = 0. # 1 # Sparse tasks: 1000
int_coeff = 1. # 0.001 or 0.01
train_model = True
if is_vision:
hidden_dim = 512
state_dim = 512
else:
hidden_dim = 32
state_dim = obs_dim
if args.algo == 'ppo':
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'ppo-lbs':
model = LBS(
obs_dim,
act_dim,
state_dim,
hidden_dim,
device,
out_type='distribution' if not args.use_mean else 'mean',
use_bn=args.use_bn,
use_ln=args.use_ln,
cur_acc=args.cur_acc,
beta=args.beta
)
elif args.algo == 'random':
agent = RandomAgent()
if train_model:
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
model.to(device)
model_lr = args.lr
model_optimizer = optim.Adam(model.parameters(), lr=model_lr)
model.train()
# Setup rollouts and Episode Queue
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
obs_rms = None
if is_vision:
init_env = make_vec_envs(args.env_name, args.seed, 1, args.gamma, None, 'cpu', False)
# normalize obs
init_env.reset()
random_agent = RandomPolicy(envs, 1)
print('Start to initialize observation normalization parameter.....')
obs_init = []
steps = 0
pre_obs_norm_step = int(1e4)
while steps < pre_obs_norm_step:
steps += 1
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = random_agent.act(None, None, None)
no, _, _, _ = init_env.step(action)
obs_init.append(np.asarray(no.detach().cpu()).astype(np.float32))
obs_init = np.array(obs_init)
obs_mean = torch.Tensor(np.mean(obs_init, 0).astype(np.float32)).to(device)
obs_std = torch.Tensor([np.std(obs_init, 0).mean().astype(np.float32)]).to(device)
if args.algo == 'ppo-lbs':
obs_init = torch.from_numpy(obs_init).float().to(device)
obs_init = ((obs_init - obs_mean) / (1e-8 + obs_std)).reshape(pre_obs_norm_step, *obs_dim)
model.get_feature_moments(obs_init)
del init_env
print('End to initialize...')
obs_rms = RunningMeanStd()
obs_rms.mean = obs_mean
obs_rms.var = obs_std**2
else:
obs_mean = 0
obs_std = 1
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=100)
episode_lengths = deque(maxlen=100)
best_return = -1e+8
best_length = -1e+8
if args.env_name in ['MagellanAnt-v2', 'MountainCarSparse-v0', 'MountainCarStochastic-Frozen', 'MountainCarStochastic-Evolving', 'HalfCheetahSparse-v3']:
states_buffer = []
update_state_buffer = []
overall_blocks = []
# Training
num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes
for j in range(num_updates):
start = time.time()
update_episode_returns = []
update_episode_lengths = []
if args.use_linear_lr_decay and args.algo != 'random':
# decrease learning rate linearly
utils.update_linear_schedule(
agent.optimizer, j, num_updates,
args.lr)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
(rollouts.obs[step] - obs_mean) / (obs_std + 1e-8), rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# It causes problem otherwise
if args.env_name == 'MarioBrosNoFrameskip-v4':
next_obs, reward, done, infos = envs.step(action.to('cpu'))
else:
# Obs reward and next obs
next_obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
discounted_returns = info['episode']['r']
ep_length = info['episode']['l']
episode_rewards.append(discounted_returns)
episode_lengths.append(ep_length)
update_episode_returns.append(discounted_returns)
update_episode_lengths.append(ep_length)
if discounted_returns > best_return:
best_return = discounted_returns
if ep_length > best_length:
best_length = ep_length
if args.env_name in ['MagellanAnt-v2', 'MountainCarSparse-v0', 'MountainCarStochastic-Frozen', 'MountainCarStochastic-Evolving', 'HalfCheetahSparse-v3']:
states_buffer.append(info['obs'])
update_state_buffer.append(info['obs'])
if args.use_dones:
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
else:
masks = torch.FloatTensor([[1.0] for done_ in done])
bad_masks = torch.FloatTensor([[1.0] for info in infos])
rollouts.insert(next_obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
obs = next_obs
# Normalize observations
rollouts.obs = ( rollouts.obs - obs_mean) / (obs_std + 1e-8)
with torch.no_grad():
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
if train_model:
o = rollouts.obs[:-1].detach().reshape(-1, *obs_dim)
no = rollouts.obs[1:].detach().reshape(-1, *obs_dim)
ext_reward = rollouts.rewards.detach()
if is_vision:
a = rollouts.actions.detach().reshape(-1, 1)
a = utils.cat_act_to_vector(a, act_dim, device)
else:
a = rollouts.actions.detach().reshape(-1, act_dim)
max_size = 2048
if obs.shape[0] > max_size:
curiosities = []
with torch.no_grad():
for indx in range(0, obs.shape[0], max_size):
c = model.curiosity(o[indx:indx+max_size], a[indx:indx+max_size], no[indx:indx+max_size])
curiosities.append(c)
curiosity = torch.cat(curiosities)
else:
with torch.no_grad():
curiosity = model.curiosity(o, a, no)
intr_rew = curiosity.reshape(ext_reward.shape).detach().cpu().numpy()
intr_rew = np.clip(intr_rew, -3 * np.sqrt(intr_ret_rms.var), 3 * np.sqrt(intr_ret_rms.var))
upd_intr_ret = []
for idx in range(intr_rew.shape[0]):
intr_ret = intr_ret * args.gamma + intr_rew[idx]
upd_intr_ret.append(intr_ret)
upd_intr_ret = np.reshape(np.stack(upd_intr_ret), [args.num_steps * args.num_processes, 1])
mean, std, count = np.mean(upd_intr_ret), np.std(upd_intr_ret), len(upd_intr_ret)
intr_ret_rms.update_from_moments(mean, std ** 2, count)
intr_rew = intr_rew / np.sqrt(intr_ret_rms.var + 1e-8)
rollouts.rewards = ext_coeff * ext_reward + int_coeff * torch.Tensor(intr_rew).to(device)
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
# model update
if train_model:
batch_size = args.num_steps * args.num_processes // args.num_mini_batch
# if is_vision:
for _ in range(args.ppo_epoch):
data_generator = rollouts.model_generator(args.num_mini_batch)
for sample in data_generator:
obs_batch, next_obs_batch, act_batch = sample
indices = None
if is_vision:
act_batch = utils.cat_act_to_vector(act_batch, act_dim, device)
model_optimizer.zero_grad()
loss = model.loss(obs_batch, act_batch, next_obs_batch, indices=indices, actor_critic=actor_critic).mean()
loss.backward()
model_optimizer.step()
with torch.no_grad():
# use the last batch
if args.algo == 'ppo-lbs':
prior_mse = model.last_prior_mse
prior_mse_std = model.last_prior_std
post_mse = model.last_post_mse
post_mse_std = model.last_post_std
model_inf_gain = model.last_kl
model_accuracy = model.last_acc
rollouts.after_update()
# save for every interval-th episode or for the last epoch
if (j % args.save_interval == 0
or j == num_updates - 1) and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
if obs_rms is not None:
ob_rms = obs_rms
else:
ob_rms = getattr(utils.get_vec_normalize(envs), 'obs_rms', None)
print('Saving policy...')
torch.save([
actor_critic,
ob_rms
], os.path.join(save_path, args.env_name + ".pt"))
if j % args.log_interval == 0 and len(episode_rewards) > 0 and len(update_episode_returns) > 0:
print("")
total_num_steps = (j + 1) * args.num_processes * args.num_steps
end = time.time()
print(
"Updates {}, num timesteps {:.2e}, FPS {} \n Last {} episodes: mean reward {:.1f}±{:.1f} (best: {:.1f}), mean length {:d}±{:d} (best: {:d}).\n Recent episodes ({:d}): reward {:.1f}±{:.1f}, length {:.1f}±{:.1f}.\n DistEntropy: {:.2e} CriticLoss: {:.2e} ActorLoss: {:.2e}"
.format(j, float(total_num_steps), int( args.num_steps * args.num_processes / (end - start)), len(episode_rewards),
np.mean(episode_rewards), np.std(episode_rewards), best_return, int(np.mean(episode_lengths)), int(np.std(episode_lengths)), int(best_length),
len(update_episode_returns), np.mean(update_episode_returns), np.std(update_episode_returns), np.mean(update_episode_lengths), np.std(update_episode_lengths),
dist_entropy, value_loss, action_loss))
if len(update_episode_returns) > 0:
writer.add_scalar('rewards/environment_returns', np.mean(update_episode_returns), total_num_steps)
writer.add_scalar('rewards/episode_lengths', np.mean(update_episode_lengths), total_num_steps)
writer.add_scalar('rewards/best_return', best_return, total_num_steps)
writer.add_scalar('rewards/best_length', best_length, total_num_steps)
if train_model:
print(" IntRew: {:.3f}±{:.3f} ExtRew: {:.3f}±{:.3f} RollRew: {:.3f}±{:.3f}; RollRet: {:.3f}±{:.3f}"
.format(curiosity.mean(), curiosity.std(), ext_reward.mean(), ext_reward.std(), rollouts.rewards.mean(), rollouts.rewards.std(), rollouts.returns.mean(), rollouts.returns.std() ))
writer.add_scalar('rewards/int_rewards', curiosity.mean(), total_num_steps)
writer.add_scalar('rewards/ext_rewards', ext_reward.mean(), total_num_steps)
writer.add_scalar('rewards/rollouts_rewards', rollouts.rewards.mean(), total_num_steps)
writer.add_scalar('rewards/rollouts_returns', rollouts.returns.mean(), total_num_steps)
if args.algo == 'ppo-lbs':
print(" PriorMSE: {:.3f}±{:.3f} PostMSE: {:.3f}±{:.3f} InfGain: {:.3f} Accuracy: {:.3f}".format(prior_mse, prior_mse_std, post_mse, post_mse_std, model_inf_gain, model_accuracy))
else:
print(" ModelMSE: {:.3f}".format(model_mse))
if args.env_name in ['MountainCarSparse-v0', 'MountainCarStochastic-Frozen', 'MountainCarStochastic-Evolving', 'HalfCheetahSparse-v3']:
if args.env_name in ['MountainCarSparse-v0', 'MountainCarStochastic-Frozen', 'MountainCarStochastic-Evolving']:
print(" " + args.env_name)
pos_range = infos[-1]['pos_range']
print(" PosRange: ({:.3f}, {:.3f}) PosInterval: {:.3f} ({:.3f})"
.format(pos_range[0], pos_range[1], pos_range[1] - pos_range[0], (pos_range[1] - pos_range[0]) / 1.8))
vel_range = infos[-1]['vel_range']
print(" VelRange: ({:.3f}, {:.3f}) VelInterval: {:.3f} ({:.3f})"
.format(vel_range[0], vel_range[1], vel_range[1] - vel_range[0], (vel_range[1] - vel_range[0]) / 0.14))
writer.add_scalar('mountain_car/pos_interval', (pos_range[1] - pos_range[0]) / 1.8, total_num_steps)
writer.add_scalar('mountain_car/vel_interval', (vel_range[1] - vel_range[0]) / 0.14, total_num_steps)
from exploration.environments.mountain_car_sparse import rate_buffer_with_blocks
n_blocks = 10
coverage, blocks = rate_buffer_with_blocks(update_state_buffer, n_blocks=n_blocks)
print(" UpdateStatesCoverage: {} ({:.3f})".format(coverage, (coverage / n_blocks**2 * 100)))
writer.add_scalar('mountain_car/update_coverage', (coverage / n_blocks**2 * 100), total_num_steps)
update_state_buffer = []
if len(overall_blocks) == 0:
overall_blocks = blocks
else:
overall_blocks = np.unique(np.concatenate([blocks, overall_blocks], axis=0), axis=0)
coverage = len(overall_blocks) # = rate_buffer_with_blocks(states_buffer, n_blocks=n_blocksoverall_blocks)
print(" OverallStatesCoverage: {} ({:.3f})".format(coverage, (coverage / n_blocks**2 * 100)))
writer.add_scalar('mountain_car/overall_coverage', (coverage / n_blocks**2 * 100), total_num_steps)
elif args.env_name == 'HalfCheetahSparse-v3':
print(" HalfCheetahSparse-v3:")
angle_range = infos[-1]['angle_range']
print(" AngleVelRange: ({:.3f}, {:.3f}) AngleVelRange: {:.3f}"
.format(angle_range[0], angle_range[1], angle_range[1] - angle_range[0]))
pos_range = infos[-1]['pos_range']
print(" PosRange: ({:.3f}, {:.3f}) PosInterval: {:.3f}"
.format(pos_range[0], pos_range[1], pos_range[1] - pos_range[0]))
vel_range = infos[-1]['vel_range']
print(" VelRange: ({:.3f}, {:.3f}) VelInterval: {:.3f}"
.format(vel_range[0], vel_range[1], vel_range[1] - vel_range[0]))
writer.add_scalar('half_cheetah/angle_vel_interval', angle_range[1] - angle_range[0], total_num_steps)
writer.add_scalar('half_cheetah/pos_interval', pos_range[1] - pos_range[0], total_num_steps)
writer.add_scalar('half_cheetah/vel_interval', vel_range[1] - vel_range[0], total_num_steps)
from exploration.environments.half_cheetah_sparse import rate_buffer_with_blocks
n_blocks = 10
coverage, blocks = rate_buffer_with_blocks(update_state_buffer, n_blocks=n_blocks)
print(" UpdateStatesCoverage: {} ({:.3f})".format(coverage, (coverage / n_blocks**2 * 100)))
writer.add_scalar('half_cheetah/update_coverage', (coverage / n_blocks**2 * 100), total_num_steps)
update_state_buffer = []
if len(overall_blocks) == 0:
overall_blocks = blocks
else:
overall_blocks = np.unique(np.concatenate([blocks, overall_blocks], axis=0), axis=0)
coverage = len(overall_blocks)
print(" OverallStatesCoverage: {} ({:.3f})".format(coverage, (coverage / n_blocks**2 * 100)))
writer.add_scalar('half_cheetah/overall_coverage', (coverage / n_blocks**2 * 100), total_num_steps)
if args.env_name == 'MagellanAnt-v2':
print(" MagellanAnt-v2")
from exploration.environments.magellan_ant import rate_buffer
coverage, blocks = rate_buffer(update_state_buffer)
print(" UpdateMazeCoverage: {} ({:.3f})"
.format(coverage, (coverage / 7 * 100)))
writer.add_scalar('ant_maze/update_coverage', (coverage / 7 * 100), total_num_steps)
update_state_buffer = []
if len(overall_blocks) == 0:
overall_blocks = blocks
else:
overall_blocks = set([*list(blocks), *list(overall_blocks)])
coverage = len(overall_blocks)
print(" OverallMazeCoverage: {} ({:.3f})"
.format(coverage, (coverage / 7 * 100)))
writer.add_scalar('ant_maze/overall_coverage', (coverage / 7 * 100), total_num_steps)
if args.env_name in ['MagellanAnt-v2', 'MountainCarSparse-v0', 'MountainCarStochastic-Frozen', 'MountainCarStochastic-Evolving', 'HalfCheetahSparse-v3']:
np.save(log_dir + '/overall_buffer.npy', states_buffer)
if args.env_name in ['MountainCarSparse-v0', 'MountainCarStochastic-Frozen', 'MountainCarStochastic-Evolving', 'HalfCheetahSparse-v3']:
np.save(log_dir + '/overall_blocks.npy', blocks)
if __name__ == "__main__":
main()